Skip to main content
Log in

The Carbon-Based 3D-Hierarchical Cathode Architecture for Li-Ion Batteries

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

High-purity NMC111 nanoparticles are obtained by sol–gel synthesis. NMC111/MWCNTs freestanding hybrid composite cathodes are produced by a simple vacuum filtration process without detriment to both the crystalline and morphologic structures of the NMC111 nanoparticles. NMC111/MWCNTs freestanding hybrid composite cathode materials exhibit enhanced cycling stability, long cycle life, and high specific discharge capacity compared with pure NMC111 electrode, which is prepared by the classic slurry method. After 1000 cycles, within 2.5–4.6 V working potential range (at 1 C-rate), the specific discharge capacity of NMC111/MWCNTs freestanding hybrid composite cathode is 118.5 mAh g−1 with a capacity loss rate of 44.2%, considerably higher than the result of pure NMC111 cathode electrode (84.9 mAh g−1 with a capacity loss rate of 59.2%). NMC111/MWCNTs freestanding hybrid cathode has shown lower polarization and good cyclic stability when compared with the pristine NMC111 cathode electrode in the cyclic voltammetry (CV) analysis. MWCNTs in the electrode have high electron conductivity and easies the electron transfer during the electrochemical charge/discharge. Graphite@NMC111/MWCNTs full cells were fabricated to support results acquired with the half cells. To analyze the working of MWCNTs-reinforced freestanding composite cathode in full cell, graphite@NMC111/MWCNTs combination was constituted and obtained a specific discharge capacity of 150.7 mAh g−1 with a capacity loss of 30.4% after 1000 cycles. Extreme cycling and structural stability increased conductivity, and a high cycle number is reached by compressing the NMC111 nanoparticles between MWCNTs. Highly electrical conductive MWCNTs, which are homogeneously dispersed on around the NMC111 nanoparticles, are employed as both structural strengthening components and surface improvers for NMC111 cathode electrodes, not only for enhancing the electrical conductivity but also supplying powerful guarding to the side reactions with the liquid electrolyte. The results have shown that the MWCNTs-based freestanding electrode form can be widely used electrode type for high-level featured lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nasir, F.M.; Abdullah, M.Z.; Ismail, M.A.: Experimental investigation of water-cooled heat pipes in the thermal management of lithium-ion EV batteries. Arab. J. Sci. Eng. 44(9), 7541–7552 (2019). https://doi.org/10.1007/s13369-019-03851-5

    Article  Google Scholar 

  2. Gröger, O.; Gasteiger, H.A.; Suchsland, J.-P.: Review—electromobility: batteries or fuel cells? J. Electrochem. Soc. 162(14), A2605–A2622 (2015). https://doi.org/10.1149/2.0211514jes

    Article  Google Scholar 

  3. Zhang, L.; Guo, J.: Understanding the reaction mechanism of lithium-sulfur batteries by in situ/operando X-ray absorption spectroscopy. Arab. J. Sci. Eng. 44(7), 6217–6229 (2019). https://doi.org/10.1007/s13369-019-03808-8

    Article  Google Scholar 

  4. Gallagher, K.G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; Srinivasan, V.: Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7(5), 1555–1563 (2014). https://doi.org/10.1039/c3ee43870h

    Article  Google Scholar 

  5. Shaju, K.M.; Bruce, P.G.: Macroporous LiNi1/3Mn1/3Co1/3O2: a high-rate positive electrode for rechargeable lithium batteries. J. Power Sources 174(2), 1201–1205 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.091

    Article  Google Scholar 

  6. Cao, X.; Zhao, Y.; Zhu, L.; Xie, L.; Cao, X.; Xiong, S., Wang, C.: Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 as cathode materials for Li-ıon batteries via an efficacious sol–gel method. Int. J. Electrochem. Sci. 11(6), 5267–5278. https://doi.org/10.20964/2016.06.93.

  7. Hashem, A.M.; Abdel-Ghany, A.E.; Abuzeid, H.M.; Ehrenberg, H.; Mauger, A.; Groult, H.; Julien, C.M.: LiNi1/3Mn1/3Co1/3O2 synthesized by sol–gel method: structure and electrochemical properties. ECS Trans. 50(24), 91–96 (2013). https://doi.org/10.1149/05024.0091ecst

    Article  Google Scholar 

  8. Vallverdu, G.; Minvielle, M.; Andreu, N.; Gonbeau, D.; Baraille, I.: First principle study of the surface reactivity of layered lithium oxides LiMO2 (M = Ni, Mn, Co). Surf. Sci. 649, 46–55 (2016). https://doi.org/10.1016/j.susc.2016.01.004

    Article  Google Scholar 

  9. Seteni, B.; Rapulenyane, N.; Ngila, J. C.; Luo, H.: Structural and electrochemical behavior of Li1.2Mn0.54Ni0.13Co0.13-xAlxO2 (x = 0.05) positive electrode material for lithium ıon battery. Mater. Today Proc. 5(4), 10479–10487 (2018). https://doi.org/10.1016/j.matpr.2017.12.379

  10. Kim, G.-H.; Kim, J.-H.; Myung, S.-T.; Yoon, C.S.; Sun, Y.-K.: Improvement of high-voltage cycling behavior of surface-modified LiNi1/3Mn1/3Co1/3O2 cathodes by fluorine substitution for Li-ion batteries. J. Electrochem. Soc. 152(9), A1707 (2005). https://doi.org/10.1149/1.1952747

    Article  Google Scholar 

  11. Buchberger, I.; Seidlmayer, S.; Pokharel, A.; Piana, M.; Hattendorff, J.; Kudejova, P.; Gilles, R.; Gasteiger, H.A.: Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC impedance. J. Electrochem. Soc. 162(14), A2737–A2746 (2015). https://doi.org/10.1149/2.0721514jes

    Article  Google Scholar 

  12. Kim, S.J.; Lee, A.Y.; Park, H.C.; Kim, S.Y.; Kim, M.C.; Lee, J.M.; Kim, S.B.; Kim, W.S.; Jeong, Y.; Park, K.W.: carbon nanotube web-based current collectors for high-performance lithium ion batteries. Mater. Today Commun. 4, 149–155 (2015). https://doi.org/10.1016/j.mtcomm.2015.06.010

    Article  Google Scholar 

  13. Stiaszny, B.; Ziegler, J.C.; Krauß, E.E.; Zhang, M.; Schmidt, J.P.; Ivers-Tiffée, E.: Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part II: calendar aging. J. Power Sources 258, 61–75 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.019

    Article  Google Scholar 

  14. Prompun, P.; Ratchahat, S.; Kaveevivitchai, W.; Kooamornpattana, W.: Carbon nanotube (CNTs) production from waste cooking oil as anode material for Li-ion batteries. J. Phys. Conf. Ser. 2175(1), 012041 (2022). https://doi.org/10.1088/1742-6596/2175/1/012041

    Article  Google Scholar 

  15. Guoping, W.; Qingtang, Z.; Zuolong, Y.; MeiZheng, Q.: The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes. Solid State Ionics 179(7–8), 263–268 (2008). https://doi.org/10.1016/j.ssi.2008.01.015

    Article  Google Scholar 

  16. Umar, Ahmad; Ahmed, Faheem; Ibrahim, Ahmed A.; Algadi, Hassan; Albargi, Hasan B.; Alhmami, Mohsen Ali M.; Almas, Tubia; Mohammed, Ayeda Y. A.; Abuhimd, Hatem; Castañeda, L. (2021). MnO2 nanoparticles anchored multi walled carbon nanotubes as potential anode materials for lithium ıon batteries. J. Nanosci. Nanotechnol. 21(10), 5296–5301. https://doi.org/10.1166/jnn.2021.19440.

  17. Du, Z.; Li, J.; Wood, M.; Mao, C.; Daniel, C.; Wood, D.L.: Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode. Electrochim. Acta 270, 54–61 (2018). https://doi.org/10.1016/j.electacta.2018.03.063

    Article  Google Scholar 

  18. Pan, C. Chi; Zhu, Y. Rong; Yang, Y. Chang; Hou, H. Shuai; Jing, M. Jun; Song, W. Xin; Yang, X. Ming; Ji, X. Bo: Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤x≤0.8) cathode materials for lithium-ıon batteries. Trans. Nonferrous Met. Soc. China (English Ed.) 26(5), 1396–1402 (2016). https://doi.org/10.1016/S1003-6326(16)64244-9

  19. Youn, D.Y.; Kim, C.; Cheong, J.Y.; Cho, S.H.; Yoon, K.R.; Jung, J.W.; Kim, N.H.; Kim, I.D.: Stable and high-capacity Si electrodes with free-standing architecture for lithium-ion batteries. ACS Appl. Energy Mater. 3(1), 208–217 (2020). https://doi.org/10.1021/acsaem.9b01274

    Article  Google Scholar 

  20. Spencer, M.A.; Augustyn, V.: Free-standing transition metal oxide electrode architectures for electrochemical energy storage. J. Mater. Sci. 54(20), 13045–13069 (2019). https://doi.org/10.1007/s10853-019-03823-y

    Article  Google Scholar 

  21. Abouimrane, A.; Ding, J.; Davidson, I.J.: Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations. J. Power Sources 189(1), 693–696 (2009). https://doi.org/10.1016/j.jpowsour.2008.08.077

    Article  Google Scholar 

  22. Guler, A.; Gungor, H.; Ozcan, S.; Coban, A.; Guler, M.O.; Akbulut, H.: A high-performance composite positive electrode based on graphene and Li(Ni1/3 Co1/3Mn1/3)O2. Int. J. Energy Res. 42(14), 4499–4511 (2018). https://doi.org/10.1002/er.4198

    Article  Google Scholar 

  23. Nisa, S.S.; Rahmawati, M.; Yudha, C.S.; Nilasary, H.; Nursukatmo, H.; Oktaviano, H.S.; Purwanto, A.: A fast approach to obtain layered transition-metal cathode material for rechargeable batteries. Batteries 8(1), 4 (2022). https://doi.org/10.3390/batteries8010004

    Article  Google Scholar 

  24. Li, X.; Zhao, X.; Wang, M.S.; Zhang, K.J.; Huang, Y.; Qu, M.Z.; Zheng, J.M.: Improved rate capability of a LiNi1/3Co1/3Mn1/3O2/CNT/graphene hybrid material for Li-ion batteries. RSC Adv. 7(39), 24359–24367 (2017). https://doi.org/10.1039/c7ra03438e

    Article  Google Scholar 

  25. Yoon, S.; Jung, K. N.; Yeon, S. H.; Jin, C. S.; Shin, K. H. Electrochemical properties of LiNi0.8Co0.15Al0.05O2-graphene composite as cathode materials for lithium-ıon batteries. J. Electroanal. Chem. 683, 88–93 (2012). https://doi.org/10.1016/j.jelechem.2012.08.005

  26. Serpone, N.; Lawless, D.; Khairutdinov, R.: Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor? J. Phys. Chem. 99(45), 16646–16654 (1995). https://doi.org/10.1021/j100045a026

    Article  Google Scholar 

  27. Hu, G.; Liu, W.; Peng, Z.; Dua, K.; Cao, Y. Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05OOH. J. Power Sources 198, 258–263 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.101

  28. Julien, C. M.; Mauger, A.; Trottier, J.; Zaghib, K.; Hovington, P.; Groult, H. Olivine-based blended compounds as positive electrodes for lithium batteries. Inorganics 4(2) (2016). https://doi.org/10.3390/inorganics4020017.

  29. Hwang, B.J.; Tsai, Y.W.; Chen, C.H.; Santhanam, R.: Influence of Mn content on the morphology and electrochemical performance of LiNi1-x-yCoxMnyO2 cathode materials. J. Mater. Chem. 13(8), 1962–1968 (2003). https://doi.org/10.1039/b301468c

    Article  Google Scholar 

  30. Zhang, L.; Fu, J.; Zhang, C. Mechanical composite of LiNi0.8Co0.15Al0.05O2/carbon nanotubes with enhanced electrochemical performance for lithium-ıon batteries. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2143-4

  31. Luo, W.; Liu, L.; Li, X.; Yu, J.; Fang, C. Templated assembly of LiNi0.8Co0.15Al0.05O2/graphene nano composite with high rate capability and long-term cyclability for lithium ıon battery. J. Alloys Compd. 810, 151786 (2019). https://doi.org/10.1016/j.jallcom.2019.151786

  32. Mentbayeva, A.; Belgibayeva, A.; Umirov, N.; Zhang, Y.; Taniguchi, I.; Kurmanbayeva, I.; Bakenov, Z.: High performance freestanding composite cathode for lithium-sulfur batteries. Electrochim. Acta 217, 242–248 (2016). https://doi.org/10.1016/j.electacta.2016.09.082

    Article  Google Scholar 

  33. Yudha, C.S.; Muzayanha, S.U.; Widiyandari, H.; Iskandar, F.; Sutopo, W.; Purwanto, A. Synthesis of LiNi0.85Co0.14Al0.01O2 cathode material and ıts performance in an NCA/graphite full-battery. Energies 12, 1886 (2019). https://doi.org/10.3390/en12101886

  34. Gupta, H.; Singh, S.K.; Singh, V.K.; Tripathi, A.K.; Srivastava, N.; Tiwari, R.K.; Mishra, R.; Meghnani, D.; Singh, R.K.: Development of polymer electrolyte and cathode material for Li-batteries. J. Electrochem. Soc. 166(3), A5187–A5192 (2019). https://doi.org/10.1149/2.0331903jes

    Article  Google Scholar 

  35. Shaju, K.M.; Subba Rao, G.V.; Chowdari, B.V.R.: Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 48(2), 145–151 (2002). https://doi.org/10.1016/S0013-4686(02)00593-5

    Article  Google Scholar 

  36. Qin, G.; Wu, Q.; Zhao, J.; Ma, Q.; Wang, C.: C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries. J. Power Sources 248, 588–595 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.070

    Article  Google Scholar 

  37. Kim, D.W.; Zettsu, N.; Teshima, K.: Three-dimensional SWCNT and MWCNT hybrid networks for extremely high-loading and high rate cathode materials. J. Mater. Chem. A 7(29), 17412–17419 (2019). https://doi.org/10.1039/c9ta03870a

    Article  Google Scholar 

  38. Wagner, N.P.; Asheim, K.; Vullum-Bruer, F.; Svensson, A.M. Performance and failure analysis of full cell lithium ıon battery with LiNi0.80Co0.15Al0.05O2 and silicon electrodes. J. Power Sources 437, 226884 (2019). https://doi.org/10.1016/j.jpowsour.2019.226884

  39. Song, C.; Wang, W.; Peng, H.; Wang, Y.; Zhao, C.; Zhang, H.; Tang, Q.; Lv, J.; Du, X.; Dou, Y.: Improving the electrochemical performance of LiNi0.80Co0.15Al0.05O2 in lithium ıon batteries by LiAlO2 surface modification. Appl. Sci. (2018). https://doi.org/10.3390/app8030378

  40. Wu, F.; Yan, Y.; Wang, R.; Cai, H.; Tong, W.; Tang, H.: Synthesis of LiCo1/3Ni1/3Mn1/3O2 @graphene for lithium-ion batteries via self-assembled polyelectrolyte layers. Ceram. Int. 43(10), 7668–7673 (2017). https://doi.org/10.1016/j.ceramint.2017.03.066

    Article  Google Scholar 

  41. Ivanishchev, A.V.; Churikov, A.V.; Ivanishcheva, I.A.; Ushakov, A.V.: Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data. Ionics (Kiel). 22(4), 483–501 (2016). https://doi.org/10.1007/s11581-015-1568-y

    Article  Google Scholar 

  42. Huang, Z.D.; Liu, X.M.; Oh, S.W.; Zhang, B.; Ma, P.C.; Kim, J.K.: Microscopically porous, interconnected single crystal LiCo1/3Ni1/3Mn1/3O2 cathode material for lithium ion batteries. J. Mater. Chem. 21(29), 10777–10784 (2011). https://doi.org/10.1039/c1jm00059d

    Article  Google Scholar 

  43. He, J.R.; Chen, Y.F.; Li, P.J.; Wang, Z.G.; Qi, F.; Liu, J.B.: Synthesis and electrochemical properties of graphene-modified LiCo1/3Ni1/3Mn1/3O2 cathodes for lithium ion batteries. RSC Adv. 4(5), 2568–2572 (2014). https://doi.org/10.1039/c3ra45115a

    Article  Google Scholar 

Download references

Funding

This study was funded by Sakarya University of Applied Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslan Coban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coban, A., Gungor, H. The Carbon-Based 3D-Hierarchical Cathode Architecture for Li-Ion Batteries. Arab J Sci Eng 47, 7147–7155 (2022). https://doi.org/10.1007/s13369-022-06725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06725-5

Keywords

Navigation