Skip to main content

Advertisement

Log in

A Hybrid Solar Irradiance Forecasting Using Full Wavelet Packet Decomposition and Bi-Directional Long Short-Term Memory (BiLSTM)

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For the prospectus of profitability and technological advancement, solar irradiance forecasting for grid-connected solar plants is essential nowadays. However, the intermittent and stochastic nature of solar photovoltaic (PV) output has become a threat to the power security and reliability of solar-connected grids. So, in search for a stable solution, this paper proposes a hybrid model to estimate a day ahead solar irradiance by employing the full wavelet packet decomposition (FWPD) and the Bidirectional long short-term memory (BiLSTM). The FWPD extracts various frequency features and statistical characteristics of the data through decomposition process. The isolated BiLSTM network with a dropout layer is then assigned to each decomposed frequency component (sub-series), where it acts as a core predictor and obtains the futuristic value of each subseries. Finally, the final forecasting (monthly and seasonal) is obtained using the FWPD reconstruction by using averaging ensemble technique of each predicted subseries. The efficiency of the proposed model is demonstrated by comparing statistical parameters: mean absolute error (MAE), mean absolute percentage error (MAPE), root-mean-square error (RMSE), coefficient of determination (R2) and forecast skills (FS), to different contrast models: naïve (baseline) predictor, long short-term memory (LSTM), gated recurrent unit (GRU), BiLSTM and conventional wavelet transform (WT)-based BiLSTM (WTBiLSTM). The percentage improvement of proposed model in RMSE and MAPE is also discussed in this paper. In order to discuss the sensitivity with respect to difference in forecasted and observed values, various tests are conducted such as index of agreement (IA), direction change in forecasting (DC) and Diebold-Mariano hypothesis (DMH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

The codes of this study are available from the corresponding author upon reasonable request.

References

  1. Liu, H.; Mi, X.; Li, Y.: Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. Energy Convers. Manag. 166, 120–131 (2018). https://doi.org/10.1016/j.enconman.2018.04.021

    Article  Google Scholar 

  2. Zang, H.; Cheng, L.; Ding, T.; Cheung, K.W.; Wei, Z.; Sun, G.: Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. Int. J. Electr. Power Energy Syst. 118, 105790 (2020). https://doi.org/10.1016/j.ijepes.2019.105790

    Article  Google Scholar 

  3. Lan, H.; Zhang, C.; Hong, Y.Y.; He, Y.; Wen, S.: Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network. Appl. Energy 247, 389–402 (2019). https://doi.org/10.1016/j.apenergy.2019.04.056

    Article  Google Scholar 

  4. REN21.2020: Renewables 2020 Global status report (REN21) (2020).

  5. Mellit, A.; Kalogirou, S.A.; Hontoria, L.; Shaari, S.: Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew. Sustain. Energy Rev. 13(2), 406–419 (2009). https://doi.org/10.1016/j.rser.2008.01.006

    Article  Google Scholar 

  6. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J.: A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 198, 111799 (2019). https://doi.org/10.1016/j.enconman.2019.111799

    Article  Google Scholar 

  7. Kumari, P.; Toshniwal, D.: Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. J. Clean. Prod. 279, 123285 (2021). https://doi.org/10.1016/j.jclepro.2020.123285

    Article  Google Scholar 

  8. Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G.: Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renew. Energy 160, 26–41 (2020). https://doi.org/10.1016/j.renene.2020.05.150

    Article  Google Scholar 

  9. Singla, P.; Duhan, M.; Saroha, S.: A comprehensive review and analysis of solar forecasting techniques. Front. Energy (2021). https://doi.org/10.1007/s11708-021-0722-7

    Article  Google Scholar 

  10. Zhao, Y.; Ye, L.; Li, Z.; Song, X.; Lang, Y.; Su, J.: A novel bidirectional mechanism based on time series model for wind power forecasting. Appl. Energy 177, 793–803 (2016). https://doi.org/10.1016/j.apenergy.2016.03.096

    Article  Google Scholar 

  11. Gamarro, H.; Gonzalez, J.E.; Ortiz, L.E.: On the assessment of a numerical weather prediction model for solar photovoltaic power forecasts in cities. J. Energy Resour. Technol. Trans. ASME. 141, 061203 (2019). https://doi.org/10.1115/1.4042972

    Article  Google Scholar 

  12. Jaidee, S.; Pora, W.: Very short-term solar power forecast using data from NWP model. In: Proceedings of 2019 4th International Conference on Information Technology: Encompassing Intelligent Technology and Innovation Towards the New Era of Human Life, InCIT 2019. pp. 44–49. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/INCIT.2019.8912012.

  13. Bouzgou, H.; Gueymard, C.A.: Fast short-term global solar irradiance forecasting with wrapper mutual information. Renew. Energy 133, 1055–1065 (2019). https://doi.org/10.1016/j.renene.2018.10.096

    Article  Google Scholar 

  14. Atique, S.; Noureen, S.; Roy, V.; Subburaj, V.; Bayne, S.; MacFie, J.: Forecasting of total daily solar energy generation using ARIMA: A case study. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019, pp. 114–119. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/CCWC.2019.8666481.

  15. Wang, G.; Su, Y.; Shu, L.: One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models. Renew. Energy 96, 469–478 (2016). https://doi.org/10.1016/j.renene.2016.04.089

    Article  Google Scholar 

  16. Alsharif, M.; Younes, M.; Kim, J.: Time series ARIMA Model for prediction of daily and monthly average global solar radiation: the case study of Seoul, South Korea. Symmetry (Basel) 11, 240 (2019). https://doi.org/10.3390/sym11020240

    Article  Google Scholar 

  17. Hinton, G.E.; Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 80(313), 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  18. Notton, G.; Voyant, C.; Fouilloy, A.; Duchaud, J.L.; Nivet, M.L.: Some applications of ANN to solar radiation estimation and forecasting for energy applications. Appl. Sci. 9, 1–21 (2019). https://doi.org/10.3390/app9010209

    Article  Google Scholar 

  19. Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Salcedo-Sanz, S.: Machine learning regressors for solar radiation estimation from satellite data. Sol. Energy 183, 768–775 (2019). https://doi.org/10.1016/j.solener.2019.03.079

    Article  Google Scholar 

  20. Saroha, S.; Aggarwal, S.K.: Wind power forecasting using wavelet transforms and neural networks with tapped delay. CSEE J. Power Energy Syst. 4, 197–209 (2018). https://doi.org/10.17775/cseejpes.2016.00970

    Article  Google Scholar 

  21. Fan, J.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y.: Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature. Renew. Sustain. Energy Rev. 94, 732–747 (2018). https://doi.org/10.1016/j.rser.2018.06.029

    Article  Google Scholar 

  22. Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A.: Forecasting of photovoltaic power generation and model optimization: a review. Renew. Sustain. Energy Rev. 81(1), 912–928 (2018). https://doi.org/10.1016/j.rser.2017.08.017

    Article  Google Scholar 

  23. Fouilloy, A.;Voyant, C.;Notton, G.;Nivet, M.L.;Laurent, J.;Fouilloy, A.;Voyant, C.;Notton, G.;Nivet, M.L.;Laurent, J.;Machine, D.;Nivet, M.L.;Duchaud, J.L.: Machine learning methods for solar irradiation forecasting: a comparison in a mediterranean site. In: Proceedings of international Conference on Energy Engineering and Smart Grids ESG. Cambridge, UK. hal-01635190 (2018)

  24. Sobri, S.; Koohi-Kamali, S.; Rahim, N.A.: Solar photovoltaic generation forecasting methods: a review. Energy Convers. Manag. 156, 459–497 (2018). https://doi.org/10.1016/j.enconman.2017.11.019

    Article  Google Scholar 

  25. Li, C.; Tang, G.; Xue, X.; Chen, X.; Wang, R.; Zhang, C.: The short-term interval prediction of wind power using the deep learning model with gradient descend optimization. Renew. Energy 155, 197–211 (2020). https://doi.org/10.1016/j.renene.2020.03.098

    Article  Google Scholar 

  26. Qing, X.; Niu, Y.: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 148, 461–468 (2018). https://doi.org/10.1016/j.energy.2018.01.177

    Article  Google Scholar 

  27. Gao, B.; Huang, X.; Shi, J.; Tai, Y.; Xiao, R.: Predicting day-ahead solar irradiance through gated recurrent unit using weather forecasting data. J. Renew. Sustain. Energy 11, 043705 (2019). https://doi.org/10.1063/1.5110223

    Article  Google Scholar 

  28. Kulshrestha, A.; Krishnaswamy, V.; Sharma, M.: Bayesian BILSTM approach for tourism demand forecasting. Ann. Tour. Res. 83, 102925 (2020). https://doi.org/10.1016/j.annals.2020.102925

    Article  Google Scholar 

  29. Zhang, B.; Zhang, H.; Zhao, G.; Lian, J.: Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks. Environ. Model. Softw. 124, 104600 (2020). https://doi.org/10.1016/j.envsoft.2019.104600

    Article  Google Scholar 

  30. Zhang, G.; Tan, F.; Wu, Y.: Ship motion attitude prediction based on an adaptive dynamic particle swarm optimization algorithm and bidirectional LSTM neural network. IEEE Access 8, 90087–90098 (2020). https://doi.org/10.1109/ACCESS.2020.2993909

    Article  Google Scholar 

  31. Cheng, H.; Ding, X.; Zhou, W.; Ding, R.: A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange. Int. J. Electr. Power Energy Syst. 110, 653–666 (2019). https://doi.org/10.1016/j.ijepes.2019.03.056

    Article  Google Scholar 

  32. Peng, T.; Zhang, C.; Zhou, J.; Nazir, M.S.: An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy 221, 119887 (2021). https://doi.org/10.1016/j.energy.2021.119887

    Article  Google Scholar 

  33. Fan, J.; Wu, L.; Ma, X.; Zhou, H.; Zhang, F.: Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew. Energy 145, 2034–2045 (2020). https://doi.org/10.1016/j.renene.2019.07.104

    Article  Google Scholar 

  34. Ghimire, S.; Deo, R.C.; Raj, N.; Mi, J.: Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction. Renew. Sustain. Energy Rev. 113, 109247 (2019). https://doi.org/10.1016/j.rser.2019.109247

    Article  Google Scholar 

  35. Sun, S.; Wang, S.; Zhang, G.; Zheng, J.: A decomposition-clustering-ensemble learning approach for solar radiation forecasting. Sol. Energy 163, 189–199 (2018). https://doi.org/10.1016/j.solener.2018.02.006

    Article  Google Scholar 

  36. Özger, M.; Başakın, E.E.; Ekmekcioğlu, Ö.; Hacısüleyman, V.: Comparison of wavelet and empirical mode decomposition hybrid models in drought prediction. Comput. Electron. Agric. 179, 105851 (2020). https://doi.org/10.1016/j.compag.2020.105851

    Article  Google Scholar 

  37. Deo, R.C.; Wen, X.; Qi, F.: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy 168, 568–593 (2016). https://doi.org/10.1016/j.apenergy.2016.01.130

    Article  Google Scholar 

  38. Mohammadi, K.; Shamshirband, S.; Tong, C.W.; Arif, M.; Petković, D.; Sudheer, C.: A new hybrid support vector machine-wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers. Manag. 92, 162–171 (2015). https://doi.org/10.1016/j.enconman.2014.12.050

    Article  Google Scholar 

  39. Wang, F.; Yu, Y.; Zhang, Z.; Li, J.; Zhen, Z.; Li, K.: Wavelet decomposition and convolutional LSTM networks based improved deep learning model for solar irradiance forecasting. Appl. Sci. 8, 1286 (2018). https://doi.org/10.3390/app8081286

    Article  Google Scholar 

  40. El-Hendawi, M.; Wang, Z.: An ensemble method of full wavelet packet transform and neural network for short term electrical load forecasting. Electr. Power Syst. Res. 182, 106265 (2020). https://doi.org/10.1016/j.epsr.2020.106265

    Article  Google Scholar 

  41. Arora, I.; Gambhir, J.; Kaur, T.: Data normalisation-based solar irradiance forecasting using artificial neural networks. Arab. J. Sci. Eng. 46, 1333–1343 (2021). https://doi.org/10.1007/s13369-020-05140-y

    Article  Google Scholar 

  42. Benali, L.; Notton, G.; Fouilloy, A.; Voyant, C.; Dizene, R.: Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components. Renew. Energy 132, 871–884 (2019). https://doi.org/10.1016/j.renene.2018.08.044

    Article  Google Scholar 

  43. Mejia, J.F.; Giordano, M.; Wilcox, E.: Conditional summertime day-ahead solar irradiance forecast. Sol. Energy 163, 610–622 (2018). https://doi.org/10.1016/j.solener.2018.01.094

    Article  Google Scholar 

  44. AlKandari, M.; Ahmad, I.: Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Appl. Comput. Inform. (2019). https://doi.org/10.1016/j.aci.2019.11.002

    Article  Google Scholar 

  45. Li, P.; Zhou, K.; Lu, X.; Yang, S.: A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 259, 114216 (2020). https://doi.org/10.1016/j.apenergy.2019.114216

    Article  Google Scholar 

  46. Gao, R.X.; Yan, R.: Wavelet packet transform. In: Gao, R.X.; Yan, R. (Eds.) Wavelets, pp. 69–81. Springer, Boston, MA (2011). https://doi.org/10.1007/978-1-4419-1545-0_5

    Chapter  Google Scholar 

  47. Nikookar, H.: Theory of wavelets. In: Nikookar, H. (Ed.) Wavelet Radio: Adaptive and Reconfigurable Wireless Systems Based on Wavelets, pp. 11–34. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/cbo9781139084697.003

    Chapter  Google Scholar 

  48. Bedi, J.; Toshniwal, D.: Deep learning framework to forecast electricity demand. Appl. Energy 238, 1312–1326 (2019). https://doi.org/10.1016/j.apenergy.2019.01.113

    Article  Google Scholar 

  49. Fischer, T.; Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270, 654–669 (2018). https://doi.org/10.1016/j.ejor.2017.11.054

    Article  MathSciNet  MATH  Google Scholar 

  50. Yildirim, Ö.: A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018). https://doi.org/10.1016/j.compbiomed.2018.03.016

    Article  Google Scholar 

  51. Yagli, G.M.; Yang, D.; Srinivasan, D.: Automatic hourly solar forecasting using machine learning models. Renew. Sustain. Energy Rev. 105, 487–498 (2019). https://doi.org/10.1016/j.rser.2019.02.006

    Article  Google Scholar 

  52. Ahmedabad climate: average temperature, weather by month, Ahmedabad weather averages—Climate-Data.org. https://en.climate-data.org/asia/india/gujarat/ahmedabad-2828/. Last accessed 24 April 2020.

  53. Abdel-Nasser, M.; Mahmoud, K.; Lehtonen, M.: Reliable solar irradiance forecasting approach based on Choquet integral and deep LSTMs. IEEE Trans. Ind. Inform. 17, 1873–1881 (2021). https://doi.org/10.1109/TII.2020.2996235

    Article  Google Scholar 

  54. Gao, B.; Huang, X.; Shi, J.; Tai, Y.; Zhang, J.: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renew. Energy 162, 1665–1683 (2020). https://doi.org/10.1016/j.renene.2020.09.141

    Article  Google Scholar 

  55. Wu, C.; Wang, J.; Chen, X.; Du, P.; Yang, W.: A novel hybrid system based on multi-objective optimization for wind speed forecasting. Renew. Energy 146, 149–165 (2020). https://doi.org/10.1016/j.renene.2019.04.157

    Article  Google Scholar 

  56. Anifowose, F.; Khoukhi, A.; Abdulraheem, A.: Investigating the effect of training–testing data stratification on the performance of soft computing techniques: an experimental study. J. Exp. Theor. Artif. Intell. 29, 517–535 (2017). https://doi.org/10.1080/0952813X.2016.1198936

    Article  Google Scholar 

  57. Husein, M.; Chung, I.Y.: Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: a deep learning approach. Energies 12, 1856 (2019). https://doi.org/10.3390/en12101856

    Article  Google Scholar 

  58. Wang, J.; Du, P.; Niu, T.; Yang, W.: A novel hybrid system based on a new proposed algorithm—multi-objective whale optimization algorithm for wind speed forecasting. Appl. Energy 208, 344–360 (2017). https://doi.org/10.1016/j.apenergy.2017.10.031

    Article  Google Scholar 

  59. Prasad, K.; Gorai, A.K.; Goyal, P.: Erratum: Corrigendum to “Development of ANFIS model for air quality forecasting and input optimization for reducing the computational cost and time.” Atmos. Environ. 128, 246–262 (2016). https://doi.org/10.1016/j.atmosenv.2016.08.012

    Article  Google Scholar 

  60. Li, C.; Zhang, Y.; Zhao, G.; Ren, Y.: Hourly solar irradiance prediction using deep BiLSTM network. Earth Sci. Inform. (2020). https://doi.org/10.1007/s12145-020-00511-3

    Article  Google Scholar 

Download references

Funding

This research is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pardeep Singla.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1647 kb)

Appendix 1

Appendix 1

Tables 15, 16, 17, and 18.

Table 15 Percentage Improvement in RMSE (γrmse) by SFM5
Table 16 Percentage Improvement in MAPE (γmape) by SFM5
Table 17 DC results for all models
Table 18 Annual % FS of proposed model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, P., Duhan, M. & Saroha, S. A Hybrid Solar Irradiance Forecasting Using Full Wavelet Packet Decomposition and Bi-Directional Long Short-Term Memory (BiLSTM). Arab J Sci Eng 47, 14185–14211 (2022). https://doi.org/10.1007/s13369-022-06655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06655-2

Keywords

Navigation