Skip to main content
Log in

Disposition-Based Concept Drift Detection and Adaptation in Data Stream

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The change in data distribution over time (known as concept drift) makes the classification process complex because of the discrepancy between current and incoming data distribution. A plethora of drift detection methods often focus on the early identification of concept drift. Along with the drift, other deformities like noise and blips are also present in the data stream. These deformities may be damaged the underlying learning system by forcing adaptation to false drift. Thereby unnecessary update performs in the learning model that leads to decrease in learner’s accuracy. The existing drift detection methods are not capable of differentiating between actual and false drift. The paper proposes DBDDM, a disposition-based drift detection method, to overcome the issue of false drift. In this paper, we utilize the approximate randomization test to find the frequency of consecutive drift and compare the obtained frequency with the threshold to determine the actual drift. DBDDM compares with the several state-of-the-art methods using synthetic and real-time datasets. It exhibits a maximum increase in accuracy of 24% and 28% with a rise of 2.50 and 1.91 average ranks using Naive Bayes and the Hoeffding tree classifier, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gama, J.; Žliobaite, I.: A survey on concept drift adaptation. In: 2015 International Joint Conference on Neural Networks (IJCNN). ACM Computing Survey, pp. 1–37 (2014)

  2. Lu, J.; Liu, A.; Song, Y.; Zhang, G.: Data-driven decision support under concept drift in streamed big data. Complex Intell. Syst. 6(1), 157–163 (2020)

    Article  Google Scholar 

  3. de Barros, R.S.M.; Hidalgo, J.I.G.; de Lima Cabral, D.R.: Wilcoxon rank sum test drift detector. Neurocomputing 275, 1954–1963 (2018)

    Article  Google Scholar 

  4. Frías-Blanco, I.; del Campo-Ávila, J.; Ramos-Jimenez, G.; Morales-Bueno, R.; Ortiz-Díaz, A.; Caballero-Mota, Y.: Online and non-parametric drift detection methods based on Hoeffding’s bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2014)

    Article  Google Scholar 

  5. Shao, J.; Ahmadi, Z.; Kramer, S.: Prototype-based learning on concept-drifting data streams. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 412–421 (2014)

  6. Lu, N.; Lu, J.; Zhang, G.; De Mantaras, R.L.: A concept drift-tolerant case-base editing technique. Artif. Intell. 230, 108–133 (2016)

    Article  MathSciNet  Google Scholar 

  7. Liu, A.; Lu, J.; Liu, F.; Zhang, G.: Accumulating regional density dissimilarity for concept drift detection in data streams. Pattern Recognit. 76, 256–272 (2018)

    Article  Google Scholar 

  8. Korycki, Ł.; Krawczyk, B. Adversarial concept drift detection under poisoning attacks for robust data stream mining (2020). arXiv preprint arXiv:200909497

  9. Hulten, G.; Spencer, L.; Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 97–106 (2001)

  10. Masud, M.M.; Gao, J.; Khan, L.; Han, J.; Thuraisingham, B.: A multi-partition multi-chunk ensemble technique to classify concept-drifting data streams. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, pp. 363–375 (2009)

  11. Abdulsalam, H.; Skillicorn, D.B.; Martin, P.: Classification using streaming random forests. IEEE Trans. Knowl. Data Eng. 23(1), 22–36 (2010)

    Article  Google Scholar 

  12. Yu, S.; Abraham, Z.; Wang, H.; Shah, M.; Wei, Y.; Príncipe, J.C.: Concept drift detection and adaptation with hierarchical hypothesis testing. J. Frank. Inst. 356(5), 3187–3215 (2019)

    Article  MathSciNet  Google Scholar 

  13. Brzezinski, D.; Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2013)

    Article  Google Scholar 

  14. Pesaranghader, A.; Viktor, H.L.: Fast Hoeffding drift detection method for evolving data streams. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, pp. 96–111 (2016)

  15. Agrahari, S.; Singh, A.K.: Concept drift detection in data stream mining: a literature review. J. King Saud Univ. Comput. Inf. Sci. (2021). https://doi.org/10.1016/j.jksuci.2021.11.006

  16. Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P.: Learning with drift detection. In: Brazilian Symposium on Artificial Intelligence, Springer, pp. 286–295 (2004)

  17. Gama, J.; Castillo, G.: Learning with local drift detection. In: International Conference on Advanced Data Mining and Applications, Springer, pp. 42–55 (2006)

  18. Nishida, K.: Learning and Detecting Concept Drift. Information Science and Technology (2008)

  19. Liu, A.; Song, Y.; Zhang, G.; Lu, J.: Regional concept drift detection and density synchronized drift adaptation. In: IJCAI International Joint Conference on Artificial Intelligence (2017)

  20. Liu, A.; Zhang, G.; Lu, J.: Fuzzy time windowing for gradual concept drift adaptation. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, pp. 1–6 (2017)

  21. Baena-Garcıa, M.; del Campo-Ávila, J.; Fidalgo, R.; Bifet, A.; Gavalda, R.; Morales-Bueno, R.: Early drift detection method. Fourth Int. Workshop Knowl. Discov. Data Streams 6, 77–86 (2006)

    Google Scholar 

  22. Ross, G.J.; Adams, N.M.; Tasoulis, D.K.; Hand, D.J.: Exponentially weighted moving average charts for detecting concept drift. Pattern Recognit. Lett. 33(2), 191–198 (2012)

    Article  Google Scholar 

  23. Bifet, A.: Adaptive learning and mining for data streams and frequent patterns. ACM SIGKDD Explor. Newsl. 11(1), 55–56 (2009)

    Article  Google Scholar 

  24. Bifet, A.; Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, SIAM, pp. 443–448 (2007)

  25. Huang, D.T.J.; Koh, Y.S.; Dobbie, G.; Pears, R.: Detecting volatility shift in data streams. In: 2014 IEEE International Conference on Data Mining, pp. 863–868. https://doi.org/10.1109/ICDM.2014.50 (2014)

  26. Pears, R.; Sakthithasan, S.; Koh, Y.S.: Detecting concept change in dynamic data streams. Mach. Learn. 97(3), 259–293 (2014)

    Article  MathSciNet  Google Scholar 

  27. Raza, H.; Prasad, G.; Li, Y.: EWMA model based shift-detection methods for detecting covariate shifts in non-stationary environments. Pattern Recognit. 48(3), 659–669 (2015)

    Article  Google Scholar 

  28. Alippi, C.; Boracchi, G.; Roveri, M.: Hierarchical change-detection tests. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 246–258 (2016)

    Article  Google Scholar 

  29. Yu, S.; Abraham, Z.: Concept drift detection with hierarchical hypothesis testing. In: Proceedings of the 2017 SIAM International Conference on Data Mining, SIAM, pp. 768–776 (2017)

  30. Miyata, Y.; Ishikawa, H.: Concept drift detection on data stream for revising DBSCAN cluster. In: Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics, pp. 104–110 (2020)

  31. Gu, F.; Zhang, G.; Lu, J.; Lin, C.T.: Concept drift detection based on equal density estimation. In: 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 24–30 (2016)

  32. Song, X.; Wu, M.; Jermaine, C.; Ranka, S.: Statistical change detection for multi-dimensional data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 667–676 (2007)

  33. Bu, L.; Alippi, C.; Zhao, D.: A pdf-free change detection test based on density difference estimation. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 324–334 (2016)

    Article  MathSciNet  Google Scholar 

  34. Bu, L.; Zhao, D.; Alippi, C.: An incremental change detection test based on density difference estimation. IEEE Trans. Syst. Man Cybern. Syst. 47(10), 2714–2726 (2017)

    Article  Google Scholar 

  35. Nishida, K.; Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) Discovery Science, pp. 264–269. Springer, Berlin (2007)

    Chapter  Google Scholar 

  36. Mahdi, O.A.; Pardede, E.; Ali, N.: A hybrid block-based ensemble framework for the multi-class problem to react to different types of drifts. Cluster Comput. 24(3), 2327–2340 (2021)

  37. Mahdi, O.A.; Pardede, E.; Ali, N.: kappa as drift detector in data stream mining. Procedia Comput. Sci. 184, 314–321 (2021)

    Article  Google Scholar 

  38. Mehmood, H.; Kostakos, P.; Cortes, M.; Anagnostopoulos, T.; Pirttikangas, S.; Gilman, E.: Concept drift adaptation techniques in distributed environment for real-world data streams. Smart Cities 4(1), 349–371 (2021)

    Article  Google Scholar 

  39. Heusinger, M.; Schleif, F.M.: reactive concept drift detection using coresets over sliding windows. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1350–1355 (2020)

  40. Misra, S.; Biswas, D.; Saha, S.K.; Mazumdar, C.: Applying Fourier inspired windows for concept drift detection in data stream. In: 2020 IEEE Calcutta Conference (CALCON), IEEE, pp. 152–156 (2020)

  41. Mahdi, O.A.; Pardede, E.; Ali, N.; Cao, J.: Diversity measure as a new drift detection method in data streaming. Knowl. Based Syst. 191, 105227 (2020)

    Article  Google Scholar 

  42. Sakthithasan, S.; Pears, R.; Koh, Y.S.: One pass concept change detection for data streams. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 461–472. Springer, Berlin (2013)

    Chapter  Google Scholar 

  43. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Agrahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrahari, S., Singh, A.K. Disposition-Based Concept Drift Detection and Adaptation in Data Stream. Arab J Sci Eng 47, 10605–10621 (2022). https://doi.org/10.1007/s13369-022-06653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06653-4

Keywords

Navigation