Skip to main content

Advertisement

Log in

Economic Operation Scheduling of Microgrid Integrated with Battery Swapping Station

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Battery swapping station (BSS) is an emerging form of energy storage that can be integrated with microgrid (MG) for economical operation of the system. To manage the scheduling between MG and BSSs, this paper proposes an optimal scheduling model for promoting the participation of BSSs in regulating the MG economic operation. The proposed grid-connected MG consists of wind turbine, photovoltaic (PV) modules, and BSSs. After the BSSs are connected to MG, the batteries in the BSSs can offer auxiliary service to grid through the battery to grid (B2G) operation. Battery swap requests, electricity prices, and MG load influence the decision making in operation scheduling of MG and BSSs. Case studies prove the effectiveness of proposed model by minimizing the MG net costs and maximizing the profits of the BSS with B2G technique and charging strategy that reduces daily charging cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Revankar, S.R.; Kalkhambkar, V.N.: Grid integration of battery swapping station: a review. J. Energy Storage 41, 102937 (2021). https://doi.org/10.1016/j.est.2021.102937

    Article  Google Scholar 

  2. Liu, C., et al.: Economic dispatch for microgrid with electric vehicles in plug-in charging and battery swapping modes. In: Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2016, pp. 1158–1163 (2016). https://doi.org/10.1109/APPEEC.2016.7779674

  3. Esmaeili, S.; Anvari-Moghaddam, A.; Jadid, S.: Optimal operation scheduling of a microgrid incorporating battery swapping stations. IEEE Trans. Power Syst. 34(6), 5063–5072 (2019). https://doi.org/10.1109/TPWRS.2019.2923027

    Article  Google Scholar 

  4. Garcia-Guarin, J.; Infante, W.; Ma, J.; Alvarez, D.; Rivera, S.: Optimal scheduling of smart microgrids considering electric vehicle battery swapping stations. Int. J. Electr. Comput. Eng. 10(5), 5093–5107 (2020). https://doi.org/10.11591/IJECE.V10I5.PP5093-5107

    Article  Google Scholar 

  5. Infante, W.; Ma, J.; Han, X.; Liebman, A.: Optimal recourse strategy for battery swapping stations considering electric vehicle uncertainty. IEEE Trans. Intell. Transp. Syst. 21, 1369–1379 (2019). https://doi.org/10.1109/tits.2019.2905898

    Article  Google Scholar 

  6. Yang, H.; Guo, C.; Ren, J.; Sheng, J.: A coordinated charging strategy on battery swapping station in microgrid considering battery to grid. In: 2019 IEEE PES Innov. Smart Grid Technol. Asia, ISGT 2019, pp. 3322–3326 (2019). https://doi.org/10.1109/ISGT-Asia.2019.8880871

  7. Ahmadian, A.; Mohammadi-Ivatloo, B.; Elkamel, A.: Electric Vehicles in Energy Systems: Modelling, Integration, Analysis, and Optimization. Springer (2020)

    Book  Google Scholar 

  8. Li, Y., et al.: Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: a bi-level programming approach via real-time pricing. Appl. Energy 232, 54–68 (2018). https://doi.org/10.1016/j.apenergy.2018.09.211

    Article  Google Scholar 

  9. Zhang, T.; Chen, X.; Yu, Z.; Zhu, X.; Shi, D.: A Monte Carlo simulation approach to evaluate service capacities of EV charging and battery swapping stations. IEEE Trans. Ind. Inform. 14(9), 3914–3923 (2018). https://doi.org/10.1109/TII.2018.2796498

    Article  Google Scholar 

  10. Dai, Q.; Cai, T.; Duan, S.; Zhao, F.: Stochastic modeling and forecasting of load demand for electric bus battery-swap station. IEEE Trans. Power Deliv. 29(4), 1909–1917 (2014). https://doi.org/10.1109/TPWRD.2014.2308990

    Article  Google Scholar 

  11. Wu, H.; Pang, G.K.H.; Choy, K.L.; Lam, H.Y.: An optimization model for electric vehicle battery charging at a battery swapping station. IEEE Trans. Veh. Technol. 67(2), 881–895 (2018). https://doi.org/10.1109/TVT.2017.2758404

    Article  Google Scholar 

  12. Zhang, L.; Lou, S.; Wu, Y.; Yi, L.; Hu, B.: Optimal scheduling of electric vehicle battery swap station based on time-of-use pricing. In: Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2015 (2014). https://doi.org/10.1109/APPEEC.2014.7066014

  13. Sun, B.; Tan, X.; Tsang, D.H.K.: Optimal charging operation of battery swapping and charging stations with QoS guarantee. IEEE Trans. Smart Grid 9(5), 4689–4701 (2018). https://doi.org/10.1109/TSG.2017.2666815

    Article  Google Scholar 

  14. Wang, B.; Dehghanian, P.; Zhao, D.: Chance-constrained energy management system for power grids with high proliferation of renewables and electric vehicles. IEEE Trans. Smart Grid 11(3), 2324–2336 (2019). https://doi.org/10.1109/tsg.2019.2951797

    Article  Google Scholar 

  15. Liu, N.; Chen, Q.; Lu, X.; Liu, J.; Zhang, J.: A charging strategy for PV-based battery switch stations considering service availability and self-consumption of PV energy. IEEE Trans. Ind. Electron. 62(8), 4878–4889 (2015). https://doi.org/10.1109/TIE.2015.2404316

    Article  Google Scholar 

  16. Nikam, V.; Kalkhambkar, V.: A review on control strategies for microgrids with distributed energy resources, energy storage systems, and electric vehicles. Int. Trans. Electr. Energy Syst. 31(1), 1–26 (2021). https://doi.org/10.1002/2050-7038.12607

    Article  Google Scholar 

  17. Xie, P.; Li, Y.; Zhu, L.; Shi, D.; Duan, X.: Supplementary automatic generation control using controllable energy storage in electric vehicle battery swapping stations. IET Gener. Transm. Distrib. 10(4), 1107–1116 (2016). https://doi.org/10.1049/iet-gtd.2015.0167

    Article  Google Scholar 

  18. Rezaee Jordehi, A.; Javadi, M.S.; Catalão, J.P.S.: Optimal placement of battery swap stations in microgrids with micro pumped hydro storage systems, photovoltaic, wind and geothermal distributed generators. Int. J. Electr. Power Energy Syst. 125, 106483 (2021). https://doi.org/10.1016/j.ijepes.2020.106483

    Article  Google Scholar 

  19. Kang, Q.; Wang, J.; Zhou, M.; Ammari, A.C.: Centralized charging strategy and scheduling algorithm for electric vehicles under a battery swapping scenario. IEEE Trans. Intell. Transp. Syst. 17(3), 659–669 (2016). https://doi.org/10.1109/TITS.2015.2487323

    Article  Google Scholar 

  20. You, P., et al.: Scheduling of EV battery swapping—part I: centralized solution. IEEE Trans. Control Netw. Syst. 5(4), 1887–1897 (2018). https://doi.org/10.1109/TCNS.2017.2773025

    Article  MathSciNet  MATH  Google Scholar 

  21. You, P., et al.: Scheduling of EV battery swapping—part II: distributed solutions. IEEE Trans. Control Netw. Syst. 5(4), 1920–1930 (2018). https://doi.org/10.1109/TCNS.2017.2774012

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, Y.; Dong, Z.Y.; Xu, Y.; Meng, K.; Zhao, J.H.; Qiu, J.: Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning. IEEE Trans. Power Syst. 29(1), 221–229 (2014). https://doi.org/10.1109/TPWRS.2013.2278852

    Article  Google Scholar 

  23. Sun, L., et al.: Optimisation model for power system restoration with support from electric vehicles employing battery swapping. IET Gener. Transm. Distrib. 10(3), 771–779 (2016). https://doi.org/10.1049/iet-gtd.2015.0441

    Article  Google Scholar 

  24. Xie, P.; Zhu, J.; Xuan, P.: Analysis of controllable capacity for electric vehicle battery swapping stations. J. Eng. 2017(13), 2125–2129 (2017). https://doi.org/10.1049/joe.2017.0705

    Article  Google Scholar 

  25. Tan, X.; Qu, G.; Sun, B.; Li, N.; Tsang, D.H.K.: Optimal scheduling of battery charging station serving electric vehicles based on battery swapping. IEEE Trans. Smart Grid 10(2), 1372–1384 (2019). https://doi.org/10.1109/TSG.2017.2764484

    Article  Google Scholar 

  26. Gao, Y.; Yang, J.; Yang, M.; Li, Z.: Deep reinforcement learning based optimal schedule for a battery swapping station considering uncertainties. IEEE Trans. Ind. Appl. 56(5), 5775–5784 (2020). https://doi.org/10.1109/TIA.2020.2986412

    Article  Google Scholar 

  27. Infante, W.; Ma, J.; Liebman, A.: Operational strategy analysis of electric vehicle battery swapping stations. IET Electr. Syst. Transp. 8(2), 130–135 (2018). https://doi.org/10.1049/iet-est.2017.0075

    Article  Google Scholar 

  28. Wu, C.; Lin, X.; Sui, Q.; Wang, Z.; Feng, Z.; Li, Z.: Two-stage self-scheduling of battery swapping station in day-ahead energy and frequency regulation markets. Appl. Energy 283, 116285 (2021). https://doi.org/10.1016/j.apenergy.2020.116285

    Article  Google Scholar 

  29. Mahoor, M.; Hosseini, Z.S.; Khodaei, A.: Least-cost operation of a battery swapping station with random customer requests. Energy 172, 913–921 (2019). https://doi.org/10.1016/j.energy.2019.02.018

    Article  Google Scholar 

  30. An, K.; Jing, W.; Kim, I.: Battery-swapping facility planning for electric buses with local charging systems. Int. J. Sustain. Transp. 14(7), 489–502 (2020). https://doi.org/10.1080/15568318.2019.1573939

    Article  Google Scholar 

  31. Guo, Y.; Lei, X.; Wang, Q.: Capacity coordination planning of isolated microgrid and battery swapping station based on the quantum behavior particle swarm optimization algorithm. Int. Trans. Electr. Energy Syst. 31(3), 1–15 (2021). https://doi.org/10.1002/2050-7038.12804

    Article  Google Scholar 

  32. Liu, W.; Niu, S.; Xu, H.; Li, X.: A new method to plan the capacity and location of battery swapping station for electric vehicle considering demand side management. Sustainability 8(6), 557 (2016). https://doi.org/10.3390/su8060557

    Article  Google Scholar 

  33. Cheng, Y.; Zhang, C.: Configuration and operation combined optimization for EV battery swapping station considering PV consumption bundling. Prot. Control Mod. Power Syst. (2017). https://doi.org/10.1186/s41601-017-0056-y

    Article  Google Scholar 

  34. M. K. Khawaja, A. Alkhalidi, and S. Mansour, “Environmental impacts of energy storage waste and regional legislation to curtail their effects – highlighting the status in Jordan,” J. Energy Storage, vol. 26, no. June, p. 100919, 2019, doi: https://doi.org/10.1016/j.est.2019.100919.

  35. Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R.: Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 104, 192–208 (2019). https://doi.org/10.1016/j.rser.2019.01.023

    Article  Google Scholar 

  36. Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H.: Erratum: Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles (Environmental Science & Technology (2011) 45 (4548–4554) DOI: 10.1021/es103607c). Environ. Sci. Technol. 45(12), 5454 (2011). https://doi.org/10.1021/es2015082

    Article  Google Scholar 

  37. Cheng, Y.; Tao, J.: Optimization of a micro energy network integrated with electric bus battery swapping station and distributed PV. In: 2nd IEEE Conf. Energy Internet Energy Syst. Integr. EI2 2018—Proc., pp. 1–6 (2018). https://doi.org/10.1109/EI2.2018.8582236

  38. Gu, H.; Liu, Z.; Qing, Q.: Optimal electric vehicle production strategy under subsidy and battery recycling. Energy Policy 109(July), 579–589 (2017). https://doi.org/10.1016/j.enpol.2017.07.043

    Article  Google Scholar 

  39. Notter, D.A., et al.: Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44(19), 7744–7744 (2010). https://doi.org/10.1021/es1029156

    Article  Google Scholar 

  40. Xiong, S.; Ji, J.; Ma, X.: Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manag. 102, 579–586 (2020). https://doi.org/10.1016/j.wasman.2019.11.013

    Article  Google Scholar 

  41. Hao, H.; Mu, Z.; Jiang, S.; Liu, Z.; Zhao, F.: GHG Emissions from the production of lithium-ion batteries for electric vehicles in China. Sustainability 9(4), 504 (2017). https://doi.org/10.3390/su9040504

    Article  Google Scholar 

  42. Gu, X.; Ieromonachou, P.; Zhou, L.; Tseng, M.L.: Developing pricing strategy to optimise total profits in an electric vehicle battery closed loop supply chain. J. Clean. Prod. 203, 376–385 (2018). https://doi.org/10.1016/j.jclepro.2018.08.209

    Article  Google Scholar 

  43. Pinegar, H.; Smith, Y.R.: Recycling of end-of-life lithium ion batteries, part I: commercial processes. J. Sustain. Metall. 5(3), 402–416 (2019). https://doi.org/10.1007/s40831-019-00235-9

    Article  Google Scholar 

  44. Larcher, D.; Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085

    Article  Google Scholar 

  45. Choma, E.F.; Ugaya, C.M.L.: Environmental impact assessment of increasing electric vehicles in the Brazilian fleet. J. Clean. Prod. 152, 497–507 (2017). https://doi.org/10.1016/j.jclepro.2015.07.091

    Article  Google Scholar 

  46. Cox, B.; Mutel, C.L.; Bauer, C.; Mendoza Beltran, A.; Van Vuuren, D.P.: Uncertain environmental footprint of current and future battery electric vehicles. Environ. Sci. Technol. 52(8), 4989–4995 (2018). https://doi.org/10.1021/acs.est.8b00261

    Article  Google Scholar 

  47. Sarker, M.R.; Pandžić, H.; Ortega-Vazquez, M.A.: Optimal operation and services scheduling for an electric vehicle battery swapping station. IEEE Trans. Power Syst. 30(2), 901–910 (2015). https://doi.org/10.1109/TPWRS.2014.2331560

    Article  Google Scholar 

  48. Ahmad, F.; Alam, M.S.; Shariff, S.M.: A cost-efficient energy management system for battery swapping station. IEEE Syst. J. 13(4), 4355–4364 (2019). https://doi.org/10.1109/JSYST.2018.2890569

    Article  Google Scholar 

  49. Liu, C.; Wang, X.; Wu, X.; Guo, J.: Economic scheduling model of microgrid considering the lifetime of batteries. IET Gener. Transm. Distrib. 11(3), 759–767 (2017). https://doi.org/10.1049/iet-gtd.2016.0772

    Article  Google Scholar 

  50. Zhao, Z.: Optimal energy management for microgrids. All Diss., p. 119. http://tigerprints.clemson.edu/all_dissertations/985 (2012)

  51. Y. Chen and Y. Perez, “Business Model Design: Lessons Learned from Tesla Motors,” pp. 53–69, 2018, doi: https://doi.org/10.1007/978-3-319-79060-2_4.

  52. Bilbao, J.; Mateos, D.; de Miguel, A.: Analysis and cloudiness influence on UV total irradiation. Int. J. Climatol. 31(3), 451–460 (2011). https://doi.org/10.1002/joc.2072

    Article  Google Scholar 

  53. Soroudi, A.: Alireza Soroudi Power System Optimization Modeling in GAMS (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaiju N. Kalkhambkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revankar, S.R., Kalkhambkar, V.N., Gupta, P.P. et al. Economic Operation Scheduling of Microgrid Integrated with Battery Swapping Station. Arab J Sci Eng 47, 13979–13993 (2022). https://doi.org/10.1007/s13369-022-06624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06624-9

Keywords

Navigation