Skip to main content

Advertisement

Log in

FPGA Implementation of a Bearing Fault Classification System Based on an Envelope Analysis and Artificial Neural Network

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bearings are one of the most widely used components of rotary machines. To keep these bearings running in the best condition, several techniques for the early diagnosis of faults are applied to enable continuous monitoring of their condition and avoid unexpected faults that may cause damage to humans and materials. Several works have focused on the development of such technologies, including those that apply artificial intelligence, in the classification and diagnosis of faults. This work reports on a multi-layer perceptron (MLP) to classify the conditions of faulty bearings, using the envelope analysis method to extract the faulty features of the bearings. The proposed architecture is implemented on a field programmable gate array (FPGA) board, where the Digilent Zybo Z7-20 platform with a Zynq-7000 FPGA circuit from Xilinx was selected as the target. The Case Western Reserve University (CWRU) dataset, which is considered the standard reference for testing bearing fault classifications, is used to evaluate the performances. The results of the implemented embedded system are first compared to those obtained through MATLAB simulations and then to those obtained from the literature. These practical results provide an average accuracy of 95 and 89% for the fault-type identification and fault-severity identification, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Attoui, I.; Oudjani, B.; Boutasseta, N.; Fergani, N.; Bouakkaz, M.; Bouraiou, A.: Novel predictive features using a wrapper model for rolling bearing fault diagnosis based on vibration signal analysis. Int. J. Adv. Manuf. Technol. 106, 3409–3435 (2020). https://doi.org/10.1007/s00170-019-04729-4

    Article  Google Scholar 

  2. Zhang, Y.; Ren, G.; Wu, D.; Wang, H.: Rolling bearing fault diagnosis utilizing variational mode decomposition based fractal dimension estimation method. Measurement 181, 109614 (2021). https://doi.org/10.1016/j.measurement.2021.109614

    Article  Google Scholar 

  3. Duan, Z.; Wu, T.; Guo, S.; Shao, T.; Malekian, R.; Zhixiong, L.: Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings : a review. Int. J. Adv. Manuf. Technol. 96, 803–819 (2018). https://doi.org/10.1007/s00170-017-1474-8

    Article  Google Scholar 

  4. Tingarikar, G.; Choudhury, A.: Vibration analysis—based fault diagnosis of a dynamically loaded bearing with distributed defect. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05862-7

    Article  Google Scholar 

  5. Niu, X.; Zhu, L.; Ding, H.: New statistical moments for the detection of defects in rolling element bearings. Int. J. Adv. Manuf. Technol. 26, 1268–1274 (2005). https://doi.org/10.1007/s00170-004-2109-4

    Article  Google Scholar 

  6. Siegel, D.; Ly, C.; Lee, J.: Methodology and framework for predicting helicopter rolling element bearing failure. IEEE Trans. Reliab. 61, 846–857 (2012). https://doi.org/10.1109/ICPHM.2011.6024339

    Article  Google Scholar 

  7. Gligorijevic, J.; Gajic, D.; Brkovic, A.; Savic-Gajic, I.; Georgieva, O.; Di Gennaro, S.: Online condition monitoring of bearings to support total productive maintenance in the packaging materials industry. Sensors 16, 1–16 (2016). https://doi.org/10.3390/s16030316

    Article  Google Scholar 

  8. Lin, H.; Ye, Y.-C.: Reviews of bearing vibration measurement using fast Fourier transform and enhanced fast Fourier transform algorithms. Adv. Mech. Eng. 11, 1–12 (2019). https://doi.org/10.1177/1687814018816751

    Article  Google Scholar 

  9. Feng, G.J.; Gu, J.; Zhen, D.; Aliwan, M.; Gu, F.S.; Ball, A.D.: Implementation of envelope analysis on a wireless condition monitoring system for bearing fault diagnosis. Int. J. Autom. Comput. 12, 14–24 (2015). https://doi.org/10.1007/s11633-014-0862-x

    Article  Google Scholar 

  10. Ibarra-zarate, D.; Tamayo-pazos, O.; Vallejo-guevara, A.: Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and acoustic emission. Int. J. Adv. Manuf. Technol. 104, 4155–4168 (2019). https://doi.org/10.1007/s00170-019-04171-6

    Article  Google Scholar 

  11. Park, C.; Choi, Y.; Kim, Y.H.: Early fault detection in automotive ball bearings using the minimum variance cepstrum. Mech. Syst. Signal Process. 38, 534–548 (2013). https://doi.org/10.1016/j.ymssp.2013.02.017

    Article  Google Scholar 

  12. Lee, D.; Hong, C.; Jeong, W.; Ahn, S.: Applied sciences time—frequency envelope analysis for fault detection of rotating machinery signals with impulsive noise. Appl. Sci. 11, 1–16 (2021). https://doi.org/10.3390/app11125373

    Article  Google Scholar 

  13. Fei, S.: Fault diagnosis of bearing based on wavelet packet transform-phase space reconstruction-singular value decomposition and SVM classifier. Arab. J. Sci. Eng. 42, 1967–1975 (2017). https://doi.org/10.1007/s13369-016-2406-x

    Article  Google Scholar 

  14. Wang, C.; Gan, M.; Zhu, C.: Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory. J. Intell. Manuf. 29, 937–951 (2018). https://doi.org/10.1007/s10845-015-1153-2

    Article  Google Scholar 

  15. Zhang, J.; Huang, D.; Yang, J.; Liu, H.; Liu, X.: Realizing the empirical mode decomposition by the adaptive stochastic resonance in a new periodical model and its application in bearing fault diagnosis. J. Mech. Sci. Technol. 31, 4599–4610 (2017). https://doi.org/10.1007/s12206-017-0906-6

    Article  Google Scholar 

  16. Wang, J.; Du, G.; Zhu, Z.; Shen, C.; He, Q.: Fault diagnosis of rotating machines based on the EMD manifold. Mech. Syst. Signal Process. 135, 1–21 (2020). https://doi.org/10.1016/j.ymssp.2019.106443

    Article  Google Scholar 

  17. Boudiaf, A.; Moussaoui, A.; Dahane, A.; Atoui, I.: A comparative study of various methods of bearing faults diagnosis using the Case Western Reserve University Data. J. Fail. Anal. Prev. 16, 271–284 (2016). https://doi.org/10.1007/s11668-016-0080-7

    Article  Google Scholar 

  18. Bokde, N.; Feijóo, A.; Villanueva, D.; Kulat, K.: A review on hybrid empirical mode decomposition models for wind speed and wind power prediction. Energies 12, 1–42 (2019). https://doi.org/10.3390/en12020254

    Article  Google Scholar 

  19. Liu, C.; Cichon, A.; Królczyk, G.; Li, Z.: Technology development and commercial applications of industrial fault diagnosis system: a review. Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-08047-6

    Article  Google Scholar 

  20. Guo, L.; Chen, J.; Li, X.: Rolling bearing fault classification based on envelope spectrum and support vector machine. J. Vib. Control 15, 1349–1363 (2009). https://doi.org/10.1177/1077546308095224

    Article  MATH  Google Scholar 

  21. Tyagi, S.; Panigrahi, S.K.: An improved envelope detection method using particle swarm optimisation for rolling element bearing fault diagnosis. J. Comput. Des. Eng. 4, 305–317 (2017). https://doi.org/10.1016/j.jcde.2017.05.002

    Article  Google Scholar 

  22. Amini, A.; Entezami, M.; Papaelias, M.: Onboard detection of railway axle bearing defects using envelope analysis of high frequency acoustic emission signals. Case Stud. Nondestruct. Test. Eval. 6, 8–16 (2016). https://doi.org/10.1016/j.csndt.2016.06.002

    Article  Google Scholar 

  23. Smith, W.A.; Randall, R.B.: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64–65, 100–131 (2015). https://doi.org/10.1016/j.ymssp.2015.04.021

    Article  Google Scholar 

  24. Liu, R.; Yang, B.; Zio, E.; Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108, 33–47 (2018). https://doi.org/10.1016/j.ymssp.2018.02.016

    Article  Google Scholar 

  25. Unal, M.; Onat, M.; Demetgul, M.; Kucuk, H.: Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network. Measurement 58, 187–196 (2014). https://doi.org/10.1016/j.measurement.2014.08.041

    Article  Google Scholar 

  26. Ben Ali, J.; Fnaiech, N.; Saidi, L.; Chebel-morello, B.; Fnaiech, F.: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 89, 16–27 (2015). https://doi.org/10.1016/j.apacoust.2014.08.016

    Article  Google Scholar 

  27. Kuncan, M.; Kaplan, K.; Recep, M.; Kaya, Y.; Ertunç, H.M.: A novel feature extraction method for bearing fault classification with one dimensional ternary patterns. ISA Trans. J. 100, 346–357 (2020). https://doi.org/10.1016/j.isatra.2019.11.006

    Article  Google Scholar 

  28. Li, Y.; Wang, X.; Si, S.; Huang, S.: Entropy based fault classification using the Case Western Reserve University data: a benchmark study. IEEE Trans. Reliab. 69, 754–767 (2020). https://doi.org/10.1109/TR.2019.2896240

    Article  Google Scholar 

  29. Welcome to the Case Western Reserve University Bearing Data Center Website | Bearing Data Center (n.d.). https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website. Accessed 22 Mar 2020

  30. Laala, W.; Guedidi, A.; Guettaf, A.: Bearing faults classification based on wavelet transform and artificial neural network. Int. J. Syst. Assur. Eng. Manag. (2020). https://doi.org/10.1007/s13198-020-01039-x

    Article  Google Scholar 

  31. Sikder, N.; Shamim, A.; Arif, M.; Islam, M.M.M.; Al, A.: Induction motor bearing fault classification using extreme learning machine based on power features. Arab. J. Sci. Eng. 46, 8475–8491 (2021). https://doi.org/10.1007/s13369-021-05527-5

    Article  Google Scholar 

  32. Bicakci, S.; Coramik, M.; Gunes, H.; Citak, H.; Ege, Y.: A new artificial neural network—based failure determination system for electric motors. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05594-8

    Article  Google Scholar 

  33. Meserkhani, A.; Jafari, S.M.; Rahi, A.: Experimental comparison of acoustic emission sensors in the detection of outer race defect of angular contact ball bearings by artificial neural network. Measurement 168, 108198 (2021). https://doi.org/10.1016/j.measurement.2020.108198

    Article  Google Scholar 

  34. Seng, K.P.; Lee, P.J.; Ang, L.M.: Embedded intelligence on FPGA: survey, applications and challenges. Electronics 10, 1–33 (2021). https://doi.org/10.3390/electronics10080895

    Article  Google Scholar 

  35. Ghazi Blaiech, A.; Ben Khalifa, K.; Valderrama, C.; Fernandes, M.A.C.; Hedi Bedoui, M.: A survey and taxonomy of FPGA-based deep learning accelerators. J. Syst. Archit. 98, 331–345 (2019). https://doi.org/10.1016/j.sysarc.2019.01.007

    Article  Google Scholar 

  36. Saidi, A.; Ben Othman, S.; Dhouibi, M.; Ben Saoud, S.: FPGA-based implementation of classification techniques: a survey. Integration 81, 280–299 (2021). https://doi.org/10.1016/j.vlsi.2021.08.004

    Article  Google Scholar 

  37. Kang, M.; Kim, J.; Kim, J.M.: An FPGA-based multicore system for real-time bearing fault diagnosis using ultrasampling rate AE signals. IEEE Trans. Ind. Electron. 62, 2319–2329 (2015). https://doi.org/10.1109/TIE.2014.2361317

    Article  Google Scholar 

  38. Camarena-Martinez, D.; Valtierra-Rodriguez, M.; Garcia-Perez, A.; Osornio-Rios, R.A.; Romero-Troncoso, R.D.J.: Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors. Sci. World J. 2014, 1–17 (2014). https://doi.org/10.1155/2014/908140

    Article  Google Scholar 

  39. Contreras-hernandez, J.L.; Almanza-ojeda, D.L.; Ledesma, S.; Ibarra-manzano, M.A.: Motor fault detection using Quaternion Signal Analysis on FPGA. Measurement 138, 416–424 (2019). https://doi.org/10.1016/j.measurement.2019.01.088

    Article  Google Scholar 

  40. Cabal-yepez, E.; Valtierra-rodriguez, M.; Romero-troncoso, R.J.; Garcia-perez, A.; Osornio-Rios, R.A.; Miranda-Vidales, H.; Alvarez-Salas, R.: FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors. Mech. Syst. Signal Process. 30, 123–130 (2012). https://doi.org/10.1016/j.ymssp.2012.01.021

    Article  Google Scholar 

  41. Bengherbia, B.; Ould Zmirli, M.; Toubal, A.; Guessoum, A.: FPGA-based wireless sensor nodes for vibration monitoring system and fault diagnosis. Measurement 101, 81–92 (2017). https://doi.org/10.1016/j.measurement.2017.01.022

    Article  Google Scholar 

  42. Bengherbia, B.; Kara, R.; Toubal, A.; Ould Zmirli, M.; Chadli, S.; Wira, P.: FPGA implementation of a wireless sensor node with a built-in ADALINE neural network coprocessor for vibration analysis and fault diagnosis in machine condition monitoring. Measurement 163, 107960 (2020). https://doi.org/10.1016/j.measurement.2020.107960

    Article  Google Scholar 

  43. McInerny, S.A.; Dai, Y.: Basic vibration signal processing for bearing fault detection. IEEE Trans. Educ. 46, 149–156 (2003). https://doi.org/10.1109/TE.2002.808234

    Article  Google Scholar 

  44. Acoustics, O.N.: FFT pruning applied to time domain interpolation and peak localization. IEEE Trans. Acoust. 35, 1776–1778 (1987). https://doi.org/10.1109/TASSP.1987.1165102

    Article  Google Scholar 

  45. Marple, S.L.: Computing the discrete-time “Analytic” signal via FFT. IEEE Trans. SIGNAL Process. 47, 2600–2603 (1999). https://doi.org/10.1109/78.782222

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research work is fully supported by the Directorate General for Scientific Research and Technological Development (DGRSDT), Algeria. The software is provided by Xilinx under Xilinx University Program (XUP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billel Bengherbia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toumi, Y., Bengherbia, B., Lachenani, S. et al. FPGA Implementation of a Bearing Fault Classification System Based on an Envelope Analysis and Artificial Neural Network. Arab J Sci Eng 47, 13955–13977 (2022). https://doi.org/10.1007/s13369-022-06599-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06599-7

Keywords

Navigation