Skip to main content
Log in

Finite Difference Approach for Critical Value Analysis to Describe Jeffery–Hamel Flow Toward an Inclined Channel with Microrotations

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present article is framed to describe the Jeffery–Hamel flow toward an inclined channel through critical value analysis by using finite difference approach in the occurrence of microrotations and viscous dissipation. Study is carried out by utilizing the fundamental equations of fluid flow, and nonlinear problem is solved by using finite difference method of Keller box. The flow regime is investigated by graphical interpretations of the numerical results corresponding to the variation in physical parameters. Likewise, the stability of the flow in divergent channel is studied by tabulating the critical Reynolds number. The critical Reynolds is computed for variation in opening angle of channel, material parameter and Weissenberg number. It is observed that where increase in Weissenberg number and greater channel opening angles seem to be halting the flow in the diverging, increasing the number of micro-rotating structures is bringing about stability in the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

r, \(\theta \), z :

Cylindrical coordinate

u, v, w :

Velocity components in r-, \(\theta \)- and z-directions, respectively,

\(\rho \) :

Density

P :

Pressure

N :

Angular momentum

\(\tau \) :

Stress tensor

\(\mu _{0}\) :

Dynamic viscosity

\(\gamma \) :

Spin gradient viscosity

\(\alpha _{1},\alpha _{2},\alpha _{3}\) :

Material parameters

D :

Velocity stress tensor

\(\nabla V\) :

Velocity gradient

\(\kappa ^{*}\) :

Rotational viscosity parameter

\(\psi _{1,0}\), \(\psi _{2,0}\) :

Elasticity parameter

\(\eta \) :

Dimensionless space variable

F :

Linear velocity

G :

Angular velocity

\(\mathrm {Re}\) :

Reynold number

Wi:

Weissenberg number

K :

Material parameter

\(C_{\mathrm{f}}\) :

Skinfriction

References

  1. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Nadeem, S.: Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame. Comput. Methods Programs Biomed. 186, 105194 (2020)

    Article  Google Scholar 

  3. Khader, M.M.; Sharma, R.P.: Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: implementing fourth order predictor–corrector FDM. Math. Comput. Simul. 181, 333–350 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.: Heat and mass transfer in electrically conducting micropolar fluid flow between two stretchable disks. In: Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.11.614

  5. Boukrouche, M.; Laetitia, P.; Ziane, Z.F.: Micropolar fluid flow in a thick domain with multiscale oscillating roughness and friction boundary conditions. J. Math. Anal. Appl. 495(1), 124688 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hossam, A.; Mahdy, A.: Transient flow of micropolar dusty hybrid nanofluid loaded with \(Fe_{3}O_{4}\)\(Ag\) nanoparticles through a porous stretching sheet. Results Phys. 21, 103777 (2021)

  7. El-Sapa, S.: Effect of magnetic field on a microstructure fluid drop embedded in an unbounded another microstructure fluid. Eur. J. Mech. B Fluids 185, 169–180 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kato, H.; Shibanuma, H.: Diverging and converging flows of dilute polymer solutions. Bull. JSME 23, 1140–1147 (1980)

    Article  Google Scholar 

  9. Berrehal, H.; Sowmya, G.: Heat transfer analysis of nanofluid flow in a channel with non-parallel walls. J. Mech. Sci. Technol. 35(1), 171–177 (2021)

    Article  Google Scholar 

  10. Hamid, M.; Usman, M.; Haq, R.U.; Tian, Z.: A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels. Arch. Appl. Mech. 91, 1907–1924 (2021)

    Article  Google Scholar 

  11. Kumbinarasaiah, S.; Raghunatha, K.R.: The applications of Hermite wavelet method to nonlinear differential equations arising in heat transfer. Int. J. Thermofluids 9, 100066 (2021)

    Article  Google Scholar 

  12. Ayeche, C.M.; Kezzar, M.; Sari, M.R.; Eid, M.R.: Analytical ADM study of time-dependent hydromagnetic flow of biofluid over a wedge. Indian J. Phys. 95(12), 2769–2784 (2021)

  13. Yang, Y.; Rządkowski, G.; Pasban, A.; Tohidi, E.; Shateyi, S.: A high accurate scheme for numerical simulation of two-dimensional mass transfer processes in food engineering. Alex. Eng. J. 60(2), 2629–2639 (2021)

    Article  Google Scholar 

  14. Gahgah, M.; Mohamed, R.S.; Mohamed, K.; Mohamed, R.E.: Duan–Rach modified Adomian decomposition method (DRMA) for viscoelastic fluid flow between nonparallel plane wall. Eur. Phys. J. Plus 135(2), 1–17 (2020)

    Article  Google Scholar 

  15. Nabwey, H.A.; Mahdy, A.: Numerical approach of micropolar dust-particles natural convection fluid flow due to a permeable cone with nonlinear temperature. Alex. Eng. J. 60(1), 1739–1749 (2021)

  16. Akmal, N.; Sagheer, M.; Hussain, S.; Kamran, A.: Study of micropolar nanofluids with power-law spin gradient viscosity model by the Keller box method. Can. J. Phys. 98(1), 16–27 (2020)

    Article  Google Scholar 

  17. Kamran, A.; Hussain, S.; Sagheer, M.; Akmal, N.: A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions. Results Phys. 7, 3037–3048 (2017)

    Article  Google Scholar 

  18. Iqbal, Z.; Azhar, E.; Mehmood, Z.; Maraj, E.N.; Kamran, A.: Computational analysis of engine-oil based magnetite nanofludic problem inspired with entropy generation. J. Mol. Liq. 230, 295–304 (2017)

    Article  Google Scholar 

  19. Azhar, E.; Mara, E.N.; Iqbal, Z.: Mechanistic investigation for the axisymmetric transport of nano composite molybdenum disulfide-silicon dioxide in ethylene glycol and sphericity assessment of nanoscale particles. Eur. Phys. J. Plus 132, 143–156 (2018)

    Google Scholar 

  20. Iqbal, Z.; Mehmood, R.; Azhar, E.; Mehmood, Z.: Impact of inclined magnetic field on micropolar Casson fluid using Keller box algorithm. Eur. Phys. J. Plus 132(4), 175 (2017)

    Article  Google Scholar 

  21. Nagler, J.: Jeffery–Hamel flow of non-Newtonian fluid with nonlinear viscosity and wall friction. Appl. Math. Mech. 38(6), 815–830 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sadeghy, K.; Khabazi, N.; Taghavi, S.: Magnetohydrodynamic (MHD) flows of viscoelastic fluids in converging/diverging channels. Int. J. Eng. Sci. 45(11), 923–938 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Turkyilmazoglu, M.: Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keller, H.B.: Accurate difference methods for nonlinear two-point boundary value problems. SIAM J. Numer. Anal. 11(2), 305–320 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehtsham Azhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamran, A., Azhar, E., Akmal, N. et al. Finite Difference Approach for Critical Value Analysis to Describe Jeffery–Hamel Flow Toward an Inclined Channel with Microrotations. Arab J Sci Eng 47, 15261–15268 (2022). https://doi.org/10.1007/s13369-021-06532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06532-4

Keywords

Navigation