Skip to main content
Log in

Effects of Liquid Nitrogen Cooling on the Microstructure Properties of Nano-Modified Concrete Under Hot Conditions

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Placement of concrete in hot weather regions is a big challenging due to the thermal cracking and durability problems, and therefore cooling concrete is a common practice. Multiple methods have been used to control and reduce placement temperature of fresh concrete. This study assesses the liquid nitrogen (LN) cooling effects on the concrete microstructure alterations. Several mixtures of binary and ternary binders were produced in actual hot weather conditions to evaluate the complementary effects of the injected LN with fly ash and/or nanosilica-modified concrete mixtures. Investigated parameters include fly ash (up to 25%), nanosilica (up to 4%) and LN (up to 276 L/m3). Microstructural testing included the use of differential thermal analysis, scanning electron microscopy and X-ray diffraction. The results show that LN has a positive influence on the consumption of portlandite, especially in the nano-modified concretes, which could eliminate the propagation of further cracks and resulted in finer and denser internal microstructures. This finding encourages the use of LN cooling of pozzolanic materials in the mix design stages and avoids the overuse of cement in the summer session.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kjellsen, K.O.; Detwiler, R.J.; Gjørv, O.E.: Pore structure of plain cement pastes hydrated at different temperatures. Cem. Concr. Res. 20(6), 927–933 (1990). https://doi.org/10.1016/0008-8846(90)90055-3

    Article  Google Scholar 

  2. Lothenbach, B.; Winnefeld, F.; Alder, C.; Wieland, E.; Lunk, P.: Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem. Concr. Res. 37(4), 483–491 (2007)

    Article  Google Scholar 

  3. Famy, C.; Scrivener, K.L.; Crumbie, A.K.: What causes differences of C-S-H gel grey levels in backscattered electron images? Cem. Concr. Res. 32(9), 1465–1471 (2002). https://doi.org/10.1016/S0008-8846(02)00808-6

    Article  Google Scholar 

  4. Gallucci, E.; Zhang, X.; Scrivener, K.L.: Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cem. Concr. Res. 53, 185–195 (2013). https://doi.org/10.1016/j.cemconres.2013.06.008

    Article  Google Scholar 

  5. Zacak, M.; Garrault, S.; Korb, J.P.; Nonat, A.: Effect of temperature on the development of CSH during early hydration of C3S. In: 12 th International Congress on the Chemistry of Cement, pp. W1–06 (2007)

  6. Juenger, M.C.G.; Hema, J.; Solt, S.: The Effects of Liquid Nitrogen on Concrete Properties. Fhwa/Tx-08/0-5111-1, vol. 7, p. 120 (2007)

  7. Lagundžija, S.; Thiam, M.: Temperature Reduction During Concrete Hydration in Massive Structures, pp. 1–118 (2017)

  8. Malisch, W.: Comparing the options for cooling concrete. Concr. Prod. 15(5), 317–320 (1997)

    Google Scholar 

  9. Beaver, W.: Liquid nitrogen for concrete cooling. Concr. Int. Des. Constr. 9, 93–95 (2004)

    Google Scholar 

  10. Juenger, M.C.G.; Solt, S.M.; Hema, J.: Effects of liquid nitrogen cooling on fresh concrete properties. ACI Mater. J. 107(2), 123–131 (2010). https://doi.org/10.14359/51663575

    Article  Google Scholar 

  11. Montgomery, D.C.; Myers, R.H.; Carter, W.H., Jr.; Vining, G.G.: The hierarchy principle in designed industrial experiments. Qual. Reliab. Eng. Int. 21(2), 197–201 (2005)

    Article  Google Scholar 

  12. Ghafari, E.; Costa, H.; Júlio, E.: RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers. Constr. Build. Mater. 66, 375–383 (2014)

    Article  Google Scholar 

  13. Sumodjo, J.G.F.: Precooling mass concrete with liquid nitrogen. Concr. Int. 34(7) 2012

  14. Abayou, A.; Yasien, A.M.; Bassuoni, M.T.: Properties of nanosilica-modified concrete cast and cured under cyclic freezing/low temperatures. Adv. Civ. Eng. Mater. 8(3), 287–306 (2019). https://doi.org/10.1520/ACEM20190013

    Article  Google Scholar 

  15. Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y.: Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838–844 (2012)

    Article  Google Scholar 

  16. Kjellsen, K.O.; Monsøy, A.; Isachsen, K.; Detwiler, R.J.: Preparation of flat-polished specimens for SEM-backscattered electron imaging and X-ray microanalysis—importance of epoxy impregnation. Cem. Concr. Res. 33(4), 611–616 (2003). https://doi.org/10.1016/S0008-8846(02)01029-3

    Article  Google Scholar 

  17. Ibrahim, R.K.; Hamid, R.; Taha, M.R.: Strength and microstructure of mortar containing nanosilica at high temperature. ACI Mater. J. 111(2), 163–170 (2014). https://doi.org/10.14359/51686497

    Article  Google Scholar 

  18. Haruehansapong, S.; Pulngern, T.; Chucheepsakul, S.: Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Constr. Build. Mater. 50, 471–477 (2014)

    Article  Google Scholar 

  19. Jaber, A.; Gorgis, I.; Hassan, M.: Relationship between splitting tensile and compressive strengths for self-compacting concrete containing nano- and micro silica. MATEC Web Conf. 162, 02013 (2018). https://doi.org/10.1051/matecconf/201816202013

    Article  Google Scholar 

  20. Senff, L.; Labrincha, J.A.; Ferreira, V.M.; Hotza, D.; Repette, W.L.: Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23(7), 2487–2491 (2009)

    Article  Google Scholar 

  21. Mehta PKAM, Monteiro P (2014) Concrete: microstructure, properties, and materials. McGraw-Hill Education

    Google Scholar 

  22. Mehta, P.K.: Effect of fly ash composition on sulfate resistance of cement. J. Proc. 83(6), 994–1000 (1986)

    Google Scholar 

  23. ส. ไทรทับทิม, “No Titleการนําสาหร่ายที่ผลิตน้ำมันไบโอดีเซลมาบําบัดน้ำเสียของ โรงงานอุตสาหกรรมรีไซเคิล,” 2554

  24. Wongkeo, W.; Thongsanitgarn, P.; Chindaprasirt, P.; Chaipanich, A.: Thermogravimetry of ternary cement blends. J. Therm. Anal. Calorim. 113(3), 1079–1090 (2013)

    Article  Google Scholar 

  25. Anjos, M.A.S.; Camões, A.; Campos, P.; Azeredo, G.A.; Ferreira, R.L.S.: Effect of high volume fly ash and metakaolin with and without hydrated lime on the properties of self-compacting concrete. J. Build. Eng. 27, 100985 (2020)

  26. Sha, W.; O’Neill, E.A.; Guo, Z.: Differential scanning calorimetry study of ordinary Portland cement. Cem. Concr. Res. 29(9), 1487–1489 (1999)

    Article  Google Scholar 

  27. Ramachandran, V.S.; Beaudoin, J.J.: Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications. Elsevier (2000)

  28. Shui, Z.; Zhang, R.; Chen, W.; Xuan, D.: Effects of mineral admixtures on the thermal expansion properties of hardened cement paste. Constr. Build. Mater. 24(9), 1761–1767 (2010)

    Article  Google Scholar 

  29. Esteves, L.P.: On the hydration of water-entrained cement–silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim. Acta 518(1–2), 27–35 (2011)

    Article  Google Scholar 

  30. Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Messeiry, M.; Abadir, E.F.; Hussain, A.I.: Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar. Mater. Des. 33(1), 127–135 (2012). https://doi.org/10.1016/j.matdes.2011.07.008

    Article  Google Scholar 

  31. Vedalakshmi, R.; Raj, A.S.; Srinivasan, S.; Babu, K.G.: Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochim. Acta 407(1–2), 49–60 (2003)

    Article  Google Scholar 

  32. Shi, C.; Wang, D.; Wu, L.; Wu, Z.: The hydration and microstructure of ultra high-strength concrete with cement–silica fume–slag binder. Cem. Concr. Compos. 61, 44–52 (2015)

    Article  Google Scholar 

  33. Hassan, M.S.; Jaber, I.N.G.A.A.: Fresh and hardened properties of nanosilica and microsilica contained self-consolidating concretes. ARPN J. Eng. Appl. Sci. 12(17), 5140–5153 (2017)

    Google Scholar 

  34. Alani, S.; Hassan, M.S.; Jaber, A.A.; Ali, I.M.: Effects of elevated temperatures on strength and microstructure of mortar containing nano-calcined montmorillonite clay. Constr. Build. Mater. 263, 120895 (2020)

  35. Singh, L.P.; Ali, D.; Tyagi, I.; Sharma, U.; Singh, R.; Hou, P.: Durability studies of nano-engineered fly ash concrete. Constr. Build. Mater. 194, 205–215 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.022

    Article  Google Scholar 

  36. Ashraf, M.; Khan, A.N.; Ali, Q.; Mirza, J.; Goyal, A.; Anwar, A.M.: Physico-chemical, morphological and thermal analysis for the combined pozzolanic activities of minerals additives. Constr. Build. Mater. 23(6), 2207–2213 (2009)

    Article  Google Scholar 

  37. Wongkeo, W.; Chaipanich, A.: Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Mater. Sci. Eng. A 527(16–17), 3676–3684 (2010)

    Article  Google Scholar 

  38. Gunasekara, C.; Sandanayake, M.; Zhou, Z.; Law, D.W.; Setunge, S.: Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Constr. Build. Mater. 253, 119205 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119205

    Article  Google Scholar 

  39. Schubert, P.: Carbonation behavior of mortars and concretes made with fly ash. Spec. Publ. 100, 1945–1962 (1987)

    Google Scholar 

  40. Kokubu, M.; Nagataki, S.: Carbonation of concrete with fly ash and corrosion of reinforcements in 20 year tests. Spec. Publ. 114, 315–330 (1989)

    Google Scholar 

  41. Nagataki, S.; Ohga, H.: Combined effect of carbonation and chloride on corrosion of reinforcement in fly ash concrete. Spec. Publ. 132, 227–244 (1992)

    Google Scholar 

  42. Atiş, C.D.: Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater. 17(3), 147–152 (2003)

    Article  Google Scholar 

  43. Shi, H.; Xu, B.; Zhou, X.: Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr. Build. Mater. 23(5), 1980–1985 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Civil Engineering Department, Concrete Lab, and Materials Lab of the University of Technology, Baghdad, Iraq, for extending their facilities for this research and also several on-going researches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Kattoof.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattoof, I., Hassan, M.S. & Hasan, S.S. Effects of Liquid Nitrogen Cooling on the Microstructure Properties of Nano-Modified Concrete Under Hot Conditions. Arab J Sci Eng 47, 12569–12583 (2022). https://doi.org/10.1007/s13369-021-06496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06496-5

Keywords

Navigation