Skip to main content
Log in

Evaluation of Residual Strength of Corroded Reinforced Concrete Beams Using Machine Learning Models

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

One of the main causes of structural durability degradation of reinforced concrete structures is corrosion of reinforcing bars. Predicting the bearing capacity of corroded reinforced concrete beams has been examined from experimental and theoretical perspectives. Most of the research works have been done on using individual predicting models instead of exploring the capacity of ensemble models. This study employs various machine-learning models, including support vector regression, artificial neural network, generalized linear regression, classification and regression-based techniques, exhaustive Chi-squared automatic interaction detection, and ensemble inference models to predict the residual capacity of corroded reinforced concrete beams based on actual data. A dataset of 120 samples collected in Ho Chi Minh City, Vietnam, is used for constructing, validating, testing the proposed models. The experimental results and statistical tests show that the generalized linear regression is the best model among all considered single predictive models and the ensemble model of generalized linear regression and artificial neural network obtained the highest prediction performance in estimating residual strength. The contribution to the body of knowledge is the development of ensemble models and various individual models that can predict the residual capacity of corroded reinforced concrete beams in a short time. This study demonstrates an effective prediction application for early structural durability estimation in the planning of building maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu, J.; Miao, J.; Ba, G.; Xiao, J.; Hou, D.: Effect of stirrup corrosion and fire on shear behavior of reinforced concrete beams. KSCE J. Civ. Eng. 25, 3424–3436 (2021)

    Google Scholar 

  2. Reshvanlou, B.A.; Nasserasadi, K.; Ahmadi, J.: Modified time-dependent model for flexural capacity assessment of corroded RC elements. KSCE J. Civ. Eng. 25, 3897–3910 (2021)

    Google Scholar 

  3. Mailvaganam, N.P.: Repair and Protection of Concrete Structures. CRC Press, London (1991)

    Google Scholar 

  4. Valcuende, M.; Parra, C.: Natural carbonation of self-compacting concretes. Constr. Build. Mater. 24(5), 848–853 (2010)

    Google Scholar 

  5. Ahmad, S.: Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement Concr. Compos. 25(4), 459–471 (2003)

    Google Scholar 

  6. Zhou, Y.; Gencturk, B.; Willam, K.; Attar, A.: Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. J. Mater. Civ. Eng. 27(9), 04014245 (2015)

    Google Scholar 

  7. Pargar, F.; Koleva, D.A.; Kolev, H.; van Breugel, K.: The onset of chloride-induced corrosion in reinforced cement-based materials as verified by embeddable chloride sensors. In: Rendon Diaz Miron, L.E.; Koleva, D.A. (Eds.) Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance, pp. 23–55. Springer, Cham (2017)

    Google Scholar 

  8. Yang, Y.; Nakamura, H.; Miura, T.; Yamamoto, Y.: Effect of corrosion-induced crack and corroded rebar shape on bond behavior. Struct. Concr. 20(6), 2171–2182 (2019)

    Google Scholar 

  9. Zhou, H.; Lu, J.; Xv, X.; Dong, B.; Xing, F.: Effects of stirrup corrosion on bond–slip performance of reinforcing steel in concrete: an experimental study. Constr. Build. Mater. 93, 257–266 (2015)

    Google Scholar 

  10. Song, L.; Fan, Z.; Hou, J.: Experimental and analytical investigation of the fatigue flexural behavior of corroded reinforced concrete beams. Int. J. Concrete Struct. Mater. 13(1), 24 (2019)

    Google Scholar 

  11. Lachemi, M.; Al-Bayati, N.; Sahmaran, M.; Anil, O.: The effect of corrosion on shear behavior of reinforced self-consolidating concrete beams. Eng. Struct. 79, 1–12 (2014)

    Google Scholar 

  12. Lin, H.; Zhao, Y.: Effects of confinements on the bond strength between concrete and corroded steel bars. Constr. Build. Mater. 118, 127–138 (2016)

    Google Scholar 

  13. El-Sayed, A.K.: Shear capacity assessment of reinforced concrete beams with corroded stirrups. Constr. Build. Mater. 134, 176–184 (2017)

    Google Scholar 

  14. Biswas, R.K.; Iwanami, M.; Chijiwa, N.; Uno, K.: Effect of non-uniform rebar corrosion on structural performance of RC structures: a numerical and experimental investigation. Constr. Build. Mater. 230, 116908 (2020)

    Google Scholar 

  15. Jnaid, F.; Aboutaha, R.S.: Residual flexural strength of corroded reinforced concrete beams. Eng. Struct. 119, 198–216 (2016)

    Google Scholar 

  16. Lu, Z.-H.; Lun, P.-Y.; Li, W.; Luo, Z.; Li, Y.; Liu, P.: Empirical model of corrosion rate for steel reinforced concrete structures in chloride-laden environments. Adv. Struct. Eng. 22(1), 223–239 (2019)

    Google Scholar 

  17. Azad, A.K.; Ahmad, S.; Al-Gohi, B.H.A.: Flexural strength of corroded reinforced concrete beams. Magn. Concr. Res. 62(6), 405–414 (2010)

    Google Scholar 

  18. Lu, Z.-H.; Wang, H.-J.; Qu, F.; Zhao, Y.-G.; Li, P.; Li, W.: Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam. Front. Struct. Civ. Eng. 14(4), 888–906 (2020)

    Google Scholar 

  19. Lu, Z.-H.; Li, H.; Li, W.; Zhao, Y.-G.; Dong, W.: An empirical model for the shear strength of corroded reinforced concrete beam. Constr. Build. Mater. 188, 1234–1248 (2018)

    Google Scholar 

  20. Liao, S.-H.; Chu, P.-H.; Hsiao, P.-Y.: Data mining techniques and applications—a decade review from 2000 to 2011. Expert Syst. Appl. 39(12), 11303–11311 (2012)

    Google Scholar 

  21. Ahmadi, M.; Naderpour, H.; Kheyroddin, A.: ANN model for predicting the compressive strength of circular steel-confined concrete. Int. J. Civ. Eng. 15(2), 213–221 (2017)

    Google Scholar 

  22. Imam, A.; Kazmi, Z.A.: Modified regression and ANN model for load carrying capacity of corroded reinforced concrete beam. AIMS Mater. Sci. 4(5), 1140–1164 (2020)

    Google Scholar 

  23. Imam, A.; Anifowose, F.; Azad, A.K.: Residual strength of corroded reinforced concrete beams using an adaptive model based on ANN. Int. J. Concr. Struct. Mater. 9(2), 159–172 (2015)

    Google Scholar 

  24. Chou, J.-S.; Pham, T.-P.-T.; Nguyen, T.-K.; Pham, A.-D.; Ngo, N.-T.: Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models. Soft. Comput. 24(5), 3393–3411 (2020)

    Google Scholar 

  25. Kou, G.; Yang, P.; Peng, Y.; Xiao, F.; Chen, Y.; Alsaadi, F.E.: Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods. Appl. Soft Comput. 86, 105836 (2020)

    Google Scholar 

  26. Li, T.; Kou, G.; Peng, Y.; Yu, P.S.: An integrated cluster detection, optimization, and interpretation approach for financial data. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3109066

    Article  Google Scholar 

  27. Kou, G.; Peng, Y.; Wang, G.: Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf. Sci. 275, 1–12 (2014)

    Google Scholar 

  28. Li, T.; Kou, G.; Peng, Y.; Shi, Y.: Classifying with adaptive hyper-spheres: an incremental classifier based on competitive learning. IEEE Trans. Syst. Man Cybern. Syst. 50(4), 1218–1229 (2020)

    Google Scholar 

  29. Kou, G.; Lu, Y.; Peng, Y.I.; Shi, Y.: Evaluation of classification algorithms using MCDM and rank correlation. Int. J. Inf. Technol. Decis. Mak. 11(01), 197–225 (2012)

    Google Scholar 

  30. Li, T.; Kou, G.; Peng, Y.: Improving malicious URLs detection via feature engineering: linear and nonlinear space transformation methods. Inf. Syst. 91, 101494 (2020)

    Google Scholar 

  31. Kou, G.; Xiao, H.; Cao, M.; Lee, L.H.: Optimal computing budget allocation for the vector evaluated genetic algorithm in multi-objective simulation optimization. Automatica 129, 109599 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Chou, J.-S.; Pham, A.-D.: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Constr. Build. Mater. 49, 554–563 (2013)

    Google Scholar 

  33. Salami, B.A.; Rahman, S.M.; Oyehan, T.A.; Maslehuddin, M.; Al Dulaijan, S.U.: Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concrete. Measurement 165, 108141 (2020)

    Google Scholar 

  34. Chou, J.-S.; Ngo, N.-T.; Chong, W.K.: The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Eng. Appl. Artif. Intell. 65, 471–483 (2017)

    Google Scholar 

  35. Cai, R., et al.: Prediction of surface chloride concentration of marine concrete using ensemble machine learning. Cement Concr. Res. 136, 106164 (2020)

    Google Scholar 

  36. Ma, Y.; Guo, Z.; Wang, L.; Zhang, J.: Experimental investigation of corrosion effect on bond behavior between reinforcing bar and concrete. Constr. Build. Mater. 152, 240–249 (2017)

    Google Scholar 

  37. Zhao, Y.; Lin, H.; Wu, K.; Jin, W.: Bond behaviour of normal/recycled concrete and corroded steel bars. Constr. Build. Mater. 48, 348–359 (2013)

    Google Scholar 

  38. Azim, I., et al.: Prediction of catenary action capacity of RC beam-column substructures under a missing column scenario using evolutionary algorithm. KSCE J. Civ. Eng. 25(3), 891–905 (2021)

    Google Scholar 

  39. Li, C.Q.; Yang, S.T.; Saafi, M.: Numerical simulation of behavior of reinforced concrete structures considering corrosion effects on bonding. J. Struct. Eng. 140(12), 04014092 (2014)

    Google Scholar 

  40. Fernandez, I.; Bairán, J.M.; Marí, A.R.: 3D FEM model development from 3D optical measurement technique applied to corroded steel bars. Constr. Build. Mater. 124, 519–532 (2016)

    Google Scholar 

  41. Karthik, M.M.; Mander, J.B.; Hurlebaus, S.: Simulating behaviour of large reinforced concrete beam-column joints subject to ASR/DEF deterioration and influence of corrosion. Eng. Struct. 222, 111064 (2020)

    Google Scholar 

  42. Nguyen, T.-H.; Le, A.-T.; Nguyen, D.-D.: Bending strength diagnosis for corroded reinforced concrete beams with attendance of deterministic, random and fuzzy parameters. J. Struct. Integr. Maint. 5(3), 183–189 (2020)

    Google Scholar 

  43. Al-Osta, M.A.; Al-Sakkaf, H.A.; Sharif, A.M.; Ahmad, S.; Baluch, M.H.: Finite element modeling of corroded RC beams using cohesive surface bonding approach. Comput. Concr. 22(2), 167–182 (2018)

    Google Scholar 

  44. Chakali, Y.; Sadok, A.H.; Tahlaiti, M.; Nacer, T.: A PSO-ANN intelligent hybrid model to predict the compressive strength of limestone fillers roller compacted concrete (RCC) to build dams. KSCE J. Civ. Eng. 25(8), 3008–3018 (2021)

    Google Scholar 

  45. Feng, D.-C., et al.: Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach. Constr. Build. Mater. 230, 117000 (2020)

    Google Scholar 

  46. Fu, B.; Feng, D.-C.: A machine learning-based time-dependent shear strength model for corroded reinforced concrete beams. J. Build. Eng. 36, 102118 (2021)

    Google Scholar 

  47. Amani, J.; Moeini, R.: Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network. Sci. Iran. 19(2), 242–248 (2012)

    Google Scholar 

  48. Zhang, G., et al.: Reinforced concrete deep beam shear strength capacity modelling using an integrative bio-inspired algorithm with an artificial intelligence model. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01137-1

    Article  Google Scholar 

  49. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  50. Breiman, L.; Friedman, J.H.; Richard, A.O.; Stone, C.J.: Classification and Regression Trees. Chapman and Hall/CRC, New York (1984)

    MATH  Google Scholar 

  51. Nelder, J.A.; Wedderburn, R.W.M.: Generalized linear models. J. R. Stat. Soc. Ser. A (Gen.) 135(3), 370–384 (1972)

    Google Scholar 

  52. Kass, G.V.: "An exploratory technique for investigating large quantities of categorical data. J. R. Stat. Soc. Ser. C (Appl. Stat.) 29(2), 119–127 (1980)

    Google Scholar 

  53. Sut, N.; Simsek, O.: Comparison of regression tree data mining methods for prediction of mortality in head injury. Expert Syst. Appl. 38(12), 15534–15539 (2011)

    Google Scholar 

  54. Vietnamese standard: Loads and Actions norm for design, 1995.

  55. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Presented at the Proceedings of the 14th International Joint Conference on Artificial Intelligence—vol. 2, Montreal, QC, Canada (1995)

  56. Chou, J.-S.; Bui, D.-K.: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Build. 82, 437–446 (2014)

    Google Scholar 

  57. S. Inc: PASW Statistics for Windows, ed. Chicago: SPSS Inc (2018)

  58. Ngo, N.-T.; Pham, A.-D.; Truong, T.T.H.; Truong, N.-S.; Huynh, N.-T.; Pham, T.M.: An ensemble machine learning model for enhancing the prediction accuracy of energy consumption in buildings. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05927-7

    Article  Google Scholar 

  59. Özdemir, E.: A new predictive model for uniaxial compressive strength of rock using machine learning method: artificial intelligence-based age-layered population structure genetic programming (ALPS-GP). Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05761-x

    Article  Google Scholar 

  60. Torabi-Kaveh, M.; Sarshari, B.: Predicting convergence rate of namaklan twin tunnels using machine learning methods. Arab. J. Sci. Eng. 45(5), 3761–3780 (2020)

    Google Scholar 

  61. Cheng, M.-Y.; Cao, M.-T.: Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Appl. Soft Comput. 22, 178–188 (2014)

    Google Scholar 

Download references

Acknowledgements

This work belongs to the project grant No: T2021-98TĐ funded by Ho Chi Minh City University of Technology and Education, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-Trinh Nguyen.

Appendix: Supplementary Data

Appendix: Supplementary Data

See Table

Table 5 Details of 120 data

5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TH., Nguyen, DT., Nguyen, DH. et al. Evaluation of Residual Strength of Corroded Reinforced Concrete Beams Using Machine Learning Models. Arab J Sci Eng 47, 9985–10002 (2022). https://doi.org/10.1007/s13369-021-06493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06493-8

Keywords

Navigation