Skip to main content
Log in

Optimization of Asymmetric Bioreduction Conditions of 2-methyl-1-phenylpropan-1-one by Lactobacillus fermentum BY35 Using I-Optimal Design-Based Model

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The bioreduction of prochiral ketones offers efficient access to chiral secondary alcohols, which are potentially beneficial precursors for producing many biologically active compounds and natural products. This bioreduction process can be affected by different parameters when whole-cell of biocatalysts such as Lactic Acid Bacteria strains are applied. In this context, this paper proposed an I-optimal design-based model to optimize culture parameters such as temperature, pH, incubation period, and agitation speed for asymmetric bioreduction of 2-methyl-1-phenylpropan-1-one (1) with Lactobacillus fermentum BY35 as a biocatalyst while achieving the highest conversion rate (cr) and enantiomeric excess (ee). The optimum settings of the four culture parameters and the cr and ee values were found using the proposed optimization model as follows: pH = 6.5, temperature = 25 °C, incubation period = 38.5 h, agitation speed = 200 rpm, the ee value = 98.78%, and the cr value = 98.92%. After the validation of the process, the cr and ee values were found to be > 99% and > 99%, respectively, while using the optimum operating conditions from the optimization model. Thus, the results of the optimization model are consistent with the results of the validation experiment. It is also noted that this paper is the first to optimize culture parameters using the proposed I-optimal design-based model for an asymmetric reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed, M.; Kelly, T.; Ghanem, A.: Applications of enzymatic and non-enzymatic methods to access enantiomerically pure compounds using kinetic resolution and racemisation. Tetrahedron 68, 6781–6802 (2012)

    Article  Google Scholar 

  2. Brooks, W.H.; Guida, W.C.; Daniel, K.G.: The significance of chirality in drug design and development. Curr. Top. Med. Chem. 11(7), 760–770 (2011)

    Article  Google Scholar 

  3. Yang, G.F.; Huang, X.: Development of quantitative structure-activity relationships and its application in rational drug design. Curr. Pharm. Des. 12(35), 4601–4611 (2006)

    Article  Google Scholar 

  4. LaPlante, S.R.; Fader, L.D.; Fandrick, K.R.; Fandrick, D.R.; Hucke, O.; Kemper, R.; Edwards, P.J.: Assessing atropisomer axial chirality in drug discovery and development. J. Med. Chem. 54, 7005–7022 (2011)

    Article  Google Scholar 

  5. Galvão, W.S.; Pinheiro, B.B.; Golçalves, L.R.B.; De Mattos, M.C.; Fonseca, T.S.; Regis, T.; Zampieri, D.; Dos Santos, J.C.S.; Costa, L.S.; Correa, M.A., et al.: Novel nanohybrid biocatalyst: Application in the kinetic resolution of secondary alcohols. J. Mater. Sci. 53, 14121–14137 (2018)

    Article  Google Scholar 

  6. Vieira, G.A.; Araujo, D.M.; Lemos, T.L.; Mattos, M.C.D.; Oliveira, M.D.C.F.D.; Melo, V.M.; Gonzalo, G.D.; Gotor-Fernández, V.; Gotor, V.: Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones. J. Braz. Chem. Soc. 21, 1509–1516 (2010)

    Article  Google Scholar 

  7. Cen, Y.; Li, D.; Xu, J.; Wu, Q.S.; Wu, Q.; Lin, X.F.: Highly focused library-based engineering of candida antarctica Lipase B with (S)-selectivity towards sec-alcohols. Adv. Synth. Catal. 361, 126–134 (2019)

    Article  Google Scholar 

  8. Noyori, R.; Hashiguchi, S.: Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 30(2), 97–102 (1997)

    Article  Google Scholar 

  9. Corey, E.J.; Helal, C.J.: Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: a new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. 37(15), 1986–2012 (1998)

    Article  Google Scholar 

  10. Lawrence, N.J.; Drew, M.D.; Bushell, S.M.: Polymethylhydrosiloxane: a versatile reducing agent for organic synthesis. J. Chem. Soc., Perkin Trans. 1, 3381–3391 (1999)

    Article  Google Scholar 

  11. Mimoun, H.; de Saint Laumer, J.Y.; Giannini, L.; Scopelliti, R.; Floriani, C.: Enantioselective reduction of ketones by polymethylhydrosiloxane in the presence of chiral zinc catalysts. J. Am. Chem. Soc. 121(26), 6158–6166 (1999)

    Article  Google Scholar 

  12. de Carvalho, C.: Whole cell biocatalysts: essential workers from nature to the industry. Microb. Biotechnol. 10(2), 250–263 (2017)

    Article  Google Scholar 

  13. Verho, R.; Londesborough, J.; Penttilä, M.; Richard, P.: Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69(10), 5892–5897 (2003)

    Article  Google Scholar 

  14. Lee, W.H.; Kim, M.D.; Jin, Y.S.; Seo, J.H.: Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl. Microbiol. Biotechnol. 97(7), 2761–2772 (2013)

    Article  Google Scholar 

  15. Yu, S.; Li, H.; Lu, Y.; Zheng, G.: A catalyst from Burkholderia cenocepacia for efficient anti-Prelog’s bioreduction of 3, 5-bis (trifluoromethyl) acetophenone. Appl. Biochem. Biotechnol. 184(4), 1319–1331 (2018)

    Article  Google Scholar 

  16. Ranjan, P.; Pandey, A.; Binod, P.: Resolution of enantiopure (S)-1-(1-napthyl) ethanol from racemic mixture by a novel Bacillus cereus isolate. J. Basic. Microbiol. 57(9), 762–769 (2017)

    Article  Google Scholar 

  17. Griffin, D.R.; Yang, F.; Carta, G.; Gainer, J.L.: Asymmetric reduction of acetophenone with calcium-alginateentrapped baker’s yeast in organic solvents. Biotechnol. Prog. 14(4), 588–593 (1998)

    Article  Google Scholar 

  18. Comasseto, J.V.; Andrade, L.H.; Omori, A.T.; Assis, L.F.; Porto, A.: Deracemization of aryl ethanols and reduction of acetophenones by whole fungal cells of Aspergillus terreus CCT 4083, Aterreus CCT 3320 and Rhizopus oryzae CCT 4964. J. Mol. Catal. B. Enzym. 29(1–6), 55–61 (2004)

    Article  Google Scholar 

  19. Sato, I.; Saito, T.; Soai, K.: Solvent-free catalytic enantioselective addition of diethylzinc to aldehydes. Chem. Commun. 24, 2471–2472 (2000)

    Article  Google Scholar 

  20. Sato, I.; Shibata, T.; Ohtake, K.; Kodaka, R.; Hirokawa, Y.; Shirai, N.; Soai, K.: Synthesis of chiral dendrimers with a hydrocarbon backbone and application to the catalytic enantioselective addition of dialkylzincs to aldehydes. Tetrahedron Lett. 41(17), 3123–3126 (2000)

    Article  Google Scholar 

  21. Ling, F.; Nian, S.; Chen, J.; Luo, W.; Wang, Z.; Lv, Y.; Zhong, W.: Development of ferrocene-based diamine-phosphine-sulfonamide ligands for iridium-catalyzed asymmetric hydrogenation of ketones. J. Org. Chem. 83(18), 10749–10761 (2018)

    Article  Google Scholar 

  22. Şahin, E.: First green synthesis of (R)-2-methyl-1-phenylpropan-1-ol using whole-cell Lactobacillus paracasei BD101 biotransformation. Biocatal. Biotransfor. 38(2), 138–143 (2020)

    Article  MathSciNet  Google Scholar 

  23. Pereira, R.S.: The use of baker’s yeast in the generation of asymmetric centers to produce chiral drugs and others compounds. Crit. Rev. Biotechnol. 18, 25–64 (1998)

    Article  Google Scholar 

  24. Dertli, E.; Mercan, E.; Yılmaz, M.T.; Sagdıc, O.: Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Sci. Technol. 71, 116–124 (2016)

    Article  Google Scholar 

  25. Yu, J.; Long, J.; Yang, Y.; Wu, W.; Xue, P.; Chung, L.W.; Zhang, X.: Iridium-catalyzed asymmetric hydrogenation of ketones with accessible and modular ferrocene-based amino-phosphine acid (f-ampha) ligands. Org. Lett. 19, 690–693 (2017)

    Article  Google Scholar 

  26. Ozdemir, A.: An I-optimal experimental design-embedded nonlinear lexicographic goal programming model for optimization of controllable design factors. Eng. Optim. 53, 392–407 (2021)

    Article  MathSciNet  Google Scholar 

  27. Özdemir, A.: Development of a bi-objective 0–1 mixed-integer nonlinear response surface-based robust design optimization model for unbalanced experimental data. Comput. Ind. Eng. 158, 107446 (2021)

    Article  Google Scholar 

  28. Wanda, K.M.; Agnieszka, M.: Enantio selective reduction of bromo- and methoxy acetophenone derivatives using carrot and celeriac enzymatic system. Tetrahedron Asymm. 15(13), 1965–1967 (2004)

    Article  Google Scholar 

  29. Sahin, E.: Production of (R)-1-(1,3-benzodioxol-5-yl) ethanol in High Enantiomeric Purity by Lactobacillus paracasei BD101. Chirality 30, 189–194 (2018)

    Article  Google Scholar 

  30. Nakamura, K.; Yamanaka, R.; Matsuda, T.; Harada, T.: recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymm. 14, 2659–2681 (2003)

    Article  Google Scholar 

  31. Mandal, D.; Ahmad, A.; Khan, M.I.; Kumar, R.: enantioselective bioreduction of acetophenone and its analogous by the fungus trichothecium sp. J. Mol. Catal. B: Enzym. 27, 61–63 (2004)

    Article  Google Scholar 

  32. Yılmaz, D.; Sahin, E.; Dertli, E.: Highly enantioselective production of chiral secondary alcohols using lactobacillus paracasei BD 101 as a new whole cell biocatalyst and evaluation of their antimicrobial effects. Chem. Biodivers. 14, e1700269 (2017)

    Article  Google Scholar 

  33. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, Hoboken, New Jersey (2016)

    MATH  Google Scholar 

  34. Özdemir, A.; Dertli, E.; Şahin, E.: Optimization of asymmetric reduction conditions of 1-(benzo [d][1, 3] dioxol-5-yl) ethanone by Lactobacillus fermentum P1 using D-optimal experimental design-based model. Prep. Biochem. Biotechnol. (2021). https://doi.org/10.1080/10826068.2021.1925913

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank Bayburt University Central Research Laboratory for HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksuoğlu, S., Özdemir, A., Serencam, H. et al. Optimization of Asymmetric Bioreduction Conditions of 2-methyl-1-phenylpropan-1-one by Lactobacillus fermentum BY35 Using I-Optimal Design-Based Model. Arab J Sci Eng 47, 6505–6514 (2022). https://doi.org/10.1007/s13369-021-06434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06434-5

Keywords

Navigation