Skip to main content
Log in

Fingerprint Denoising Using Iterative Rule-Based Filter

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A fingerprint authentication plays an important role in computer security in the modern world to prevent hacking and to safeguard valuable information of users. Fingerprint authentication is vulnerable against noisy environment, particularly, the salt and pepper noise damages the fingerprint image, and consequently, the false recognition accuracy is increased. Currently, the major challenges in the field of fingerprint denoising are the lack of peak signal-to-noise ratio, which is unfit for huge noise, and the damage of ridge and valley structures. The aim of this article is the effective restoration of ridge structures of noisy fingerprint images corrupted by heavy salt and pepper noise. In an attempt to address this problem, this paper proposes a fingerprint denoising method, namely 'iterative rule-based filter (IRF)'. This novel filter comprises the five techniques, namely iterative approach, rule-based noise reduction, mean computation, median computation, majority-oriented denoising and MinMax oriented denoising to effectively remove the impulse noise. The main contribution of this denoising research is the framing of essential rules to define the applicable ranges of neighbor elements count for different denoising filters on account of the successive iterative procedures with multiwindow sizes. The proposed IRF filter consists of five iterations with varying window sizes. The novel incorporation of majority- and MinMax-guided noise-free value prediction scheme induces the denoising quality to a superior level. The IRF filter gains high peak signal-to-noise ratio and image enhancement factor, compared to the existing denoising methods. The proposed filter is appropriate for the enhancement of fingerprint due to its restoration range of more than 90% noise environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fingerprint Identification, Accessed from <https://www.biometricupdate.com/201205/what-is-fingerprintidentification>, Accessed on 04 Mar 2021

  2. Greenberg, S.; Aladjem, M.; Kogan, D.: Fingerprint image enhancement using filtering techniques. Real Time Imag. 8(3), 227–236 (2002)

    Article  Google Scholar 

  3. Kanagalakshmi, K., Chandra, E.: Performance evaluation of filters in noise removal of fingerprint image. In: ICECT 3rd International Conference on Electronical Computer Technology, vol. 1, pp. 117–121, 2011.

  4. KumarDass, A.: Improvising MSN and PSNR for finger-print image noised by gaussian and salt and pepper. Int. J. Multimed. Appl. 4(4), 59–72 (2012)

    Google Scholar 

  5. Devnath, L.; Islam, R.: Fingerprint image de-noising by various filters for different noise using wavelet transform fingerprint image de-noising by various filters for different noise using wavelet transform. Am. Int. J. Res. Sci. Technol. Eng. Math. 13(1), 39–44 (2016)

    Google Scholar 

  6. SenthilSelvi, A.; Kumar, K.P.M.; Dhanasekeran, S.; Maheswari, P.U.; Ramesh, S.; Pandi, S.S.: De-noising of images from salt and pepper noise using hybrid filter, fuzzy logic noise detector and genetic optimization algorithm (HFGOA). Multimed. Tools Appl. 79, 4115–4131 (2020)

    Article  Google Scholar 

  7. Lin, Y.; Sun, J.; Luo, H.: A neuro-fuzzy network based impulse noise filtering for gray scale images. Neurocomputing 127(2), 190–199 (2014)

    Google Scholar 

  8. Russo, F.: Hybrid neuro-fuzzy filter for impulse noise removal. Pattern Recognit. 32(11), 1843–1855 (1999)

    Article  Google Scholar 

  9. Lee, C.-S.; Kuo, Y.-H.; Yu, P.-T.: Weighted fuzzy mean filters for image processing. Fuzzy Sets Syst. 89(2), 157–180 (1997)

    Article  Google Scholar 

  10. Haritopoulos, M.; Yin, H.; Allinson, N.M.: Image denoising using self-organizing map-based nonlinear independent component analysis. Neural Netw. 15(8–9), 1085–1098 (2002)

    Article  Google Scholar 

  11. Bae, J.; Sujin Kim, H.-S.; Kang, A.: Fingerprint image denoising and inpainting using convolutional neural network. J. Korean Soc. Ind. Appl. Math. 24(4), 363–374 (2020)

    MATH  Google Scholar 

  12. Fu, B.; Zhao, X.Y.; Ren, Y.G.; Li, X.M.; Wang, X.H.: A salt and pepper noise image denoising method based on the generative classification. Multim. Tools Appl. 78(9), 12043–12053 (2018)

    Article  Google Scholar 

  13. Duan, F.; Zhang, Y.-J.: A highly effective impulse noise detection algorithm for switching median filters. IEEE Signal Process. Lett. 17(7), 647–650 (2010)

    Article  Google Scholar 

  14. Xu, Z.; Wu, H.R.; Qiu, B.; Yu, X.: Geometric features-based filtering for suppression of impulse noise in color images. IEEE Trans. Image Process. 18(8), 1742–1759 (2009)

    Article  MathSciNet  Google Scholar 

  15. Chen, J.; Zhan, Y.; Cao, H.; Wu, X.: Adaptive probability filter for removing salt and pepper noises. IET Image Process. 12(6), 863–871 (2018)

    Article  Google Scholar 

  16. Lin, P.-H.; Chen, B.-H.; Cheng, F.-C.; Huang, S.-C.: A morphological mean filter for impulse noise removal. J. Disp. Technol. 12(4), 344–350 (2016)

    Google Scholar 

  17. Pattnaika, A.; Agarwala, S.; Chanda, S.: A new and efficient method for removal of high density salt and pepper noise through cascade decision based filtering algorithm. Proc. Technol. 6, 108–117 (2012)

    Article  Google Scholar 

  18. Jin, L.: Complex impulse noise removal from color images based on super pixel segmentation. J. Vis. Commun. Image Represent. 48, 54–65 (2017)

    Article  Google Scholar 

  19. Pok, G.; Liu, J.-C.; Nair, A.S.: Selective removal of impulse noise based on homogeneity level information. IEEE Trans. Image Process. 12(1), 85–92 (2003)

    Article  Google Scholar 

  20. Jin, L.; Liu, H.; Xuand, X.; Song, E.: Color impulsive noise removal based on quaternion representation and directional vector order-statistics. Signal Process. 91(5), 1249–1261 (2011)

    Article  Google Scholar 

  21. Dong, Y.; Xu, S.: A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process. Lett. 14(3), 193–196 (2007)

    Article  Google Scholar 

  22. Wang, Z.; Zhang, D.: Restoration of impulse noise corrupted images using long-range correlation. IEEE Signal Process. Lett. 5(1), 4–7 (1998)

    Article  Google Scholar 

  23. Prajwalasimha, S.N., Sahana, G.C., Vaani, K.: Fingerprint image denoising in spatial domain: an implementation based on a combined median and average filtering approach. 29(03), 13559–13572 (2020)

  24. Ince, M.; Lu, S.; Ali Alfadhli, S.; Maulood, I.; Alresheedi, S.S.: Fingerprint salt and pepper noisy image enhancement with threshold method. IOP Conf. Ser. Mater. Sci. Eng. 1077(1), 012049 (2020)

    Article  Google Scholar 

  25. Garg, B.: Restoration of highly salt-and-pepper-noise-corrupted images using novel adaptive trimmed median filter. Signal Image Video Process. 14(8), 1555–1563 (2020)

    Article  Google Scholar 

  26. Han, K., Wang, Z., Chen, Z.: Fingerprint image enhancement method based on adaptive median filter. I: Proceedings of the 24th Asia-Pacific Conf. Commun. APCC, pp. 40–44 (2019)

  27. Nasri, M.; Saryazdi, S.; Nezamabadi-pourour, H.: A fast adaptive salt and pepper noise reduction method in images. Circ. Syst. Signal Process. 32(4), 1839–1857 (2013)

    Article  Google Scholar 

  28. Garnett, R.; Huegerich, T.; Chui, C.; He, W.: A universal noise removal algorithm with an impulse detector. Image (Rochester, N.Y.) 14(11), 1747–1754 (2005)

    Google Scholar 

  29. Sohn, K.; Lee, K.-C.; Lim, J.: Impulsive noise filtering based on noise detection in corrupted digital color images. Circ. Syst. Signal Process. 20(6), 643–654 (2001)

    Article  Google Scholar 

  30. Smolka, B.; Szczepanski, M.K.; Swierniak, A.; Wojciechowsk, K.W.: Random walk approach to the problem of impulse noise reduction. IFAC Proc. 33(3), 313–318 (2000)

    Google Scholar 

  31. Karo, N.N.B.; Yulia Sari, A.; Aziza, N.; Putra, H.K.: The enhancement of fingerprint images using gabor filter. J. Phys. Conf. Ser. 1196(1), 1–6 (2019)

    Google Scholar 

  32. Prabhu, R.; Yu, X.; Wang, Z.; Liu, D.; Jiang, A.: U-finger: multi-scale dilated convolutional network for fingerprint image denoising and inpainting, p. 45–50. Springer, New York (2019)

    Google Scholar 

  33. Li, X.; Shen, H.; Zhang, L.; Zhang, H.; Yuan, Q.; Yang, G.: Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multi-temporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(11), 7086–7098 (2014)

    Article  Google Scholar 

  34. Kou, G.; Xiao, H.; Cao, M.; Lee, L.H.: Optimal computing budget allocation for the vector evaluated genetic algorithm in multi-objective simulation optimization. Automatica 129(5), 109599 (2021)

    Article  MathSciNet  Google Scholar 

  35. Li, T.; Kou, G.; Peng, Y.: Improving malicious URLs detection via feature engineering: linear and nonlinear space transformation methods. Inf. Syst. 91(3), 101494 (2020)

    Article  Google Scholar 

  36. Li, T.T.; Kou, G.; Peng, Y.; Shi, Y.: Classifying with adaptive hyper-spheres: An incremental classifier based on competitive learning. IEEE Trans. Syst. Man Cyber. Syst. 50(4), 1218–1229 (2020)

    Article  Google Scholar 

  37. Kou, G., et al.: Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decis. Support Syst. 140, 113429 (2021)

    Article  Google Scholar 

  38. Li, T.; Kou, G.; Peng, Y.; Yu, P.S.: An integrated cluster detection, optimization, and interpretation approach for financial data. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3109066

    Article  Google Scholar 

  39. Siung Lin, P.-H.; Chen, B.-H.; Cheng, F.-C.; Huang, S.-C.: A morphological mean filter for impulse noise removed. J. Disp. Technol. 12(4), 344–350 (2016)

    Google Scholar 

  40. Chen, J.; Zhan, Y.; Cao, H.; Wu, X.: Adaptive probability filter for removing salt and pepper noise. IET Image Proc. 12(6), 863–871 (2018)

    Article  Google Scholar 

  41. Erkan, U.; Hoag Thanh, D.N.; Hieu, L.M.; Enginoglu, S.: An iterative mean filter for image denoising. IEEE Access 7, 167847–167859 (2019)

    Article  Google Scholar 

  42. Sankaran, A.; Vatsa, M.; Singh, R.: Multisensor optical and latent fingerprint database. IEEE Access 3, 653–665 (2015)

    Article  Google Scholar 

  43. Nist-302-DB: <https://www.nist.gov/itl/iad/image-group/nist-special-database-302> Accessed on 15 Mar 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohamed Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.M., Venkadesh, P. Fingerprint Denoising Using Iterative Rule-Based Filter. Arab J Sci Eng 47, 10187–10201 (2022). https://doi.org/10.1007/s13369-021-06429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06429-2

Keywords

Navigation