Skip to main content

Advertisement

Log in

Minimizing the Influence of Cogging Torque on Motor Performance of PM Synchronous Machines for Elevator Applications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Low speed and high torque permanent magnet synchronous motors are used in elevator applications. In these motors, the cogging torque causes negative effects. The cogging torque is a magneto-static effect caused by the change in magnetic attractiveness and repulsiveness surrounding the rotor magnets during the rotation of the rotor itself. This torque causes ripple and noise hence, it must be reduced especially at small loads and low speeds. For this reason, the focus of this study is to design a Permanent Magnet Synchronous Motor (PMSM) with high efficiency, power density and torque/ volume rate, and with reduced undesired cogging torque. Designed motor in aforementioned criteria has been analyzed with different skew lengths to reduce the cogging torque. The effects of the skew on the motor torque, cogging torque, efficiency, and harmonics are investigated. The graphics and the tables are obtained sequentially for each skew length. The skew rate is selected as 0.5 on the table to get a required performance in prototype manufacturing. Therefore, it makes the motor performance higher and reduce the torque ripple, vibration, and acoustic noise. The designed PMSM will be used to carry the elevator cabin between the floors. Due to centrifugal force, the PM motors are usually designed as inset magnet in rotor side. On the contrary in this study, the PMs are mounted on the surface of the rotor because of the low speed. All of the designs are confirmed by using the CD-Adapco Speed software based on Finite Element Method (FEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. He, C.; Wu, T.: Analysis and design of surface permanent magnet synchronous motor and generator. Ces Trans. Elect. Mach. Syst. 3(1), 94–100 (2019)

    Article  Google Scholar 

  2. R. Vartanian and H. A. Toliyat.: Design and comparison of an optimized permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) with an induction motor with identical NEMA Frame stators. IEEE Electric Ship Technologies Symposium (2009). Doi: https://doi.org/10.1109/ESTS.2009.4906501

  3. Eyyup, O.; Zeki, O.; Mehmet, P.; Hakan, C.; Ahmet, H.S.; Hasan, K.: Sensorless eld oriented control of nonsinusoidal flux-distribution permanent magnet synchronous motor with a FEM based ANN observer. Turk. J. Elect. Eng. Comput. Sci. 24, 2994–3010 (2016)

    Article  Google Scholar 

  4. Liu, X.; Fu, W.N.; Niu, S.: Optimal structure design of permanent magnet motors based on a general pattern of rotor topologies. IEEE Trans. Mag. 53(11), 1–4 (2017)

    Google Scholar 

  5. Kalimov, A.; Shimansky, S.: Optimal design of the synchronous motor with the permanent magnets on the rotor surface. IEEE Trans. Magnet. 51(3), 1–4 (2015)

    Google Scholar 

  6. Polat, M.; Yildiz, A.: Influence of different pole head shapes on motor performance in switched reluctance motors. Adv. Elect. Comput. Eng. (2020). https://doi.org/10.4316/AECE.2020.03009

    Article  Google Scholar 

  7. Gundogdu, T.; Komurgoz, G.: A systematic design optimization approach for interior permanent magnet machines equipped with novel semi-overlapping windings. Struct. Multidisc. Optim (2021). https://doi.org/10.1007/s00158-020-02746-6

    Article  Google Scholar 

  8. Faramarzi Palangar, M.; Mahmoudi, A.; Kahourzade, S., et al.: Simultaneous efficiency and starting torque optimization of a line-start permanent-magnet synchronous motor using two different optimization approaches. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05659-8

    Article  Google Scholar 

  9. Mutluer, M.; Şahman, M.A.; Cunkas, M.: Heuristic optimization based on penalty approach for surface permanent magnet synchronous machines. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04689-y

    Article  Google Scholar 

  10. Ahn, J.M.; Son, J.C.; Lim, D.K.: Optimal design of outer-rotor surface mounted permanent magnet synchronous motor for cogging torque reduction using territory particle swarm optimization. J. Electr. Eng. Technol. (2021). https://doi.org/10.1007/s42835-020-00599-z

    Article  Google Scholar 

  11. Jang, G.U.; Kim, C.W.; Bae, D., et al.: Reliability-based robust design optimization for torque ripple reduction considering manufacturing uncertainty of interior permanent magnet synchronous motor. J. Mech. Sci. Technol. (2020). https://doi.org/10.1007/s12206-020-0223-3

    Article  Google Scholar 

  12. Yildiz, A.; Polat, M.; Ozdemir, M.T.: Design optimization of inverted switched reluctance motor using ant colony optimization algorithm. Int. Conf. Artif. Intell. Data Process. (IDAP) (2018). https://doi.org/10.1109/IDAP.2018.8620923

    Article  Google Scholar 

  13. Ergene, L.; Polat, A.; Bakhtiarzadeh, H.: Design of a permanent magnet synchronous motor used in elevators. J. Facult. Eng. Archit. Gazi Univ. (2018). https://doi.org/10.17341/gazimmfd.416529

    Article  Google Scholar 

  14. Wang, J.H.; Tan, F.W.; Jin, R.L.: Research on low-speed gearless permanent magnet synchronous motor for elevator drive. Int. Conf. Elect. Mach. Syst. Nanj. (2005). https://doi.org/10.1109/ICEMS.2005.202568

    Article  Google Scholar 

  15. Cicalé, S.; Albini, L.; Parasiliti, F.; Villani, M.: Design of a permanent magnet synchronous motor with grain oriented electrical steel for direct-drive elevators. XXth Int. Conf. Elect. Mach. (2012). https://doi.org/10.1109/ICElMach.2012.6350037

    Article  Google Scholar 

  16. Yetis, H.; Boztepeli, H.; Yasa, Y.; Mese, E.: Comparative design of direct drive PM synchronous motors in gearless elevator systems. 3rd Int. Conf. Elect. Power Energy Conv. Syst. (2013). https://doi.org/10.1109/EPECS.2013.6713011

    Article  Google Scholar 

  17. Yetis, H.; Mese, E.; Biyikli, M.: Design and comparison of ferrite based ipm and ndfeb based spm synchronous motors for gearless elevator systems. XIII Int. Conf. Elect. Mach. (ICEM) (2018). https://doi.org/10.1109/ICELMACH.2018.8506825

    Article  Google Scholar 

  18. Jiang, J.W.; Bilgin, B.; Yang, Y.; Sathyan, A.; Dadkhah, H.; Emadi, A.: Rotor skew pattern design and optimisation for cogging torque reduction. IET Elect. Syst. Transp. (2016). https://doi.org/10.1049/iet-est.2015.0021

    Article  Google Scholar 

  19. Glowacz, A.; Tadeusiewicz, R.; Legutko, S.; Caesarendra, W.; Irfan, Muhammad; Liu, H.; Brumercik, F.; Gutten, M.; Sulowicz, M.; Daviu, J.A.A.; Sarkodie-Gyan, T.; Fracz, P.; Kumar, A.; Xiang, J.: Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Appl. Acoust. (2021). https://doi.org/10.1016/j.apacoust.2021.108070

    Article  Google Scholar 

  20. Glowacz, A.: Fault diagnosis of electric impact drills using thermal imaging. Measurement (2021). https://doi.org/10.1016/j.measurement.2020.108815

    Article  Google Scholar 

  21. Cai, B.; Hao, K.; Wang, Z.; Yang, C.; Kong, X.; Liu, Z.; Ji, R.; Liu, Y.: Data-driven early fault diagnostic methodology of permanent magnet synchronous motor. Exp Syst Appl (2021). https://doi.org/10.1016/j.eswa.2021.115000

    Article  Google Scholar 

  22. Zhaoyang, Fu.; Liu, X.; Liu, J.: Research on the fault diagnosis of dual-redundancy BLDC motor. Energy Rep. (2021). https://doi.org/10.1016/j.egyr.2021.02.032

    Article  Google Scholar 

  23. Recep, Mehmet; Mi̇naz.: An effective method for detection of stator fault in PMSM with 1D-LBP. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.07.013

    Article  Google Scholar 

  24. Chen, L.; Zhang, Z.; Cao, J.; Wang, X.: A novel method of combining nonlinear frequency spectrum and deep learning for complex system fault diagnosis. Measurement (2020). https://doi.org/10.1016/j.measurement.2019.107190

    Article  Google Scholar 

  25. Xing, Z.; Wang, X.; Zhao, W.: Analysis and reduction of electromagnetic force waves of permanent magnet synchronous motors considering rotor eccentricity. J. Electr. Eng. Technol. (2021). https://doi.org/10.1007/s42835-021-00821-6

    Article  Google Scholar 

  26. Li, Z.; Chen, J.; Zhang, C.; Liu, L.; Wang, X.: Cogging torque reduction in external-roto permanent magnet torque motor based on different shapt of magnet. IEEE 8th Int. Conf. CIS RAM (2017). https://doi.org/10.1109/ICCIS.2017.8274792

    Article  Google Scholar 

  27. Ambekar, R.; Ambekar, S.: Design investigation for continual torque operative performance of PMSM for vehicle. Sādhanā (2020). https://doi.org/10.1007/s12046-020-01360-y

    Article  Google Scholar 

  28. K. Harisudha, S. S. Afrose and K. Suresh. : Different pole arc and different magnet combination to reduce the cogging torque in PMDC motors. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (2017)

  29. Ge, X.; Zhu, Z.Q.; Kemp, G.; Moule, D.; Williams, C.: Optimal step-skew methods for cogging torque reduction accounting for three-dimensional effect of interior permanent magnet machines. IEEE Trans. Energy Conv. (2017). https://doi.org/10.1109/TEC.2016.2620476

    Article  Google Scholar 

  30. Binns, K.J.; Shimmin, D.W.: Relationship between rated torque and size of permanent magnet machines. IEE Proceed. Elect. Power Appl. (1996). https://doi.org/10.1049/ip-epa:19960776

    Article  Google Scholar 

  31. Honsinger, V.B.: Sizing equations for electrical machinery. IEEE Trans. Energy Conv. (1987). https://doi.org/10.1109/TEC.1987.4765812

    Article  Google Scholar 

  32. Faiz, J.; Zareh, N.: Optimal design of a small permanent magnet wind generator for rectified loads. World Renew Energy Cong Sweden Linköping (2011). https://doi.org/10.3384/ecp110574193

    Article  Google Scholar 

  33. T. A. Lipo. : Introduction to AC Machine Design. First Edition Copyright © 2017 by the Electrical and Electronics Engineers, Inc. All rights reserved, Chapter 2, pp. 51–77 (2017). https://doi.org/10.1002/9781119352181

  34. Akyun, Y.; Nory, H.; Talas, M.Z.; Kurum, H.: (2019) Design analysis and verification of PMSM motor for dishwasher machine. 4th Int. Conf. Power Elect. Appl. (ICPEA) (2019). https://doi.org/10.1109/ICPEA1.2019.8911146

    Article  Google Scholar 

  35. J. R. Hendershot & T. J. Miller.: Design of Brushless Permanent-Magnet Machine. Florida: Magna Physics Publishing & Oxford University Press, ISBN 978–0–9840687–0–8 (2010)

  36. Lee, K.; Lee, J.; Lee, H.: Inductance calculation of flux concentrating permanent magnet motor through nonlinear magnetic equivalent circuit. IEEE Trans. Magnet. (2015). https://doi.org/10.1109/TMAG.2015.2438000

    Article  Google Scholar 

  37. Wang, R.; Pekarek, S.; O’Regan, P.; Larson, A.; Maaren, R.V.: Incorporating skew in a magnetic equivalent circuit model of synchronous machines. IEEE Trans. Energy Conv. (2015). https://doi.org/10.1109/TEC.2014.2373034

    Article  Google Scholar 

  38. Mohammadi, A.A.; Pop, A.C.; Gyselinck, J.: An approach for the BH curve identification of magnetic core of synchronous reluctance machines. IEEE Trans. Magnet. (2020). https://doi.org/10.1109/TMAG.2020.3031465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Polat.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, M., Akyun, Y. & Nory, H. Minimizing the Influence of Cogging Torque on Motor Performance of PM Synchronous Machines for Elevator Applications. Arab J Sci Eng 47, 13749–13763 (2022). https://doi.org/10.1007/s13369-021-06385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06385-x

Keywords

Navigation