Skip to main content
Log in

Fractional-Order PID Controller Design for Buck Converter System via Hybrid Lévy Flight Distribution and Simulated Annealing Algorithm

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

One of the main challenges in power converters is to adopt a convenient controller that is designed with an appropriate approach. In terms of controllers, linear and nonlinear types are available. Nonlinear controllers may be good for achieving dynamic capabilities; however, designing them involves undesirable complexity. Thus, alternative linear counterparts are desirable to achieve optimum performance. Fractional-order proportional-integral derivative (FOPID) controller stands as a good choice for this purpose since it is a more capable version of one of widely adopted linear controller known as PID. Therefore, in this study, a FOPID controller was used to achieve optimum performance for a buck converter. To obtain the best performance, a novel hybridized metaheuristic algorithm, which combines both Lévy flight distribution and simulated annealing algorithms (LFDSA), was utilized. The developed algorithm involves a balanced structure in terms of explorative and exploitative phases, which was confirmed via performing related analysis on unimodal and multimodal benchmark functions. Non-parametric statistical test has also showed the better capability of the proposed algorithm. Due to its enhanced capability, the proposed algorithm helped achieving optimum values of FOPID parameters such that a better closed-loop output voltage control performance of the buck converter in terms of time and frequency domain responses as well as disturbance rejection have been achieved. The proposed LFDSA-based FOPID controller also tested against other capable and reported state-of-the-art algorithm and the results have also verified the superior capability of the LFDSA over other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.
Fig. 15

Similar content being viewed by others

References

  1. Leng, M.; Zhou, G.; Tian, Q.; Xu, G.; Zhang, X.: Improved small-signal model for switching converter with ripple-based control. IEEE Trans. Ind. Electron. 68, 222–235 (2021). https://doi.org/10.1109/TIE.2020.2965478

    Article  Google Scholar 

  2. Li, J.; Wu, A.: Influence of non-ideal factors on the boundary control of buck converters with curved switching surfaces. IEEE Access. 7, 52790–52803 (2019). https://doi.org/10.1109/ACCESS.2019.2912449

    Article  Google Scholar 

  3. Kapat, S.; Krein, P.T.: A tutorial and review discussion of modulation, control and tuning of high-performance DC-DC converters based on small-signal and large-signal approaches. IEEE Open J. Power Electron. 1, 339–371 (2020). https://doi.org/10.1109/ojpel.2020.3018311

    Article  Google Scholar 

  4. Hekimoğlu, B.; Ekinci, S.: Optimally designed PID controller for a DC-DC buck converter via a hybrid whale optimization algorithm with simulated annealing. Electrica. 20, 19–27 (2020). https://doi.org/10.5152/ELECTRICA.2020.19034

    Article  Google Scholar 

  5. Tepljakov, A.: FOMCON: fractional-order modeling and control toolbox. In: Fractional-order modeling and control of dynamic systems. pp. 107–129. Springer (2017)

  6. Demirören, A.; Ekinci, S.; Hekimoğlu, B.; Izci, D.: Opposition-based artificial electric field algorithm and its application to FOPID controller design for unstable magnetic ball suspension system. Eng. Sci. Technol. an Int. J. 24, 469–479 (2021). https://doi.org/10.1016/j.jestch.2020.08.001

    Article  Google Scholar 

  7. Ekinci, S.; Izci, D.; Hekimoğlu, B.: Optimal FOPID speed control of DC motor via opposition-based hybrid manta ray foraging optimization and simulated annealing algorithm. Arab. J. Sci. Eng. 46, 1395–1409 (2021). https://doi.org/10.1007/s13369-020-05050-z

    Article  Google Scholar 

  8. Morsali, J.; Zare, K.; Tarafdar Hagh, M.: Applying fractional order PID to design TCSC-based damping controller in coordination with automatic generation control of interconnected multi-source power system. Eng. Sci. Technol. an Int. J. 20, 1–17 (2017). https://doi.org/10.1016/j.jestch.2016.06.002

    Article  Google Scholar 

  9. Bingul, Z.; Karahan, O.: Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay. Optim. Control Appl. Methods. 39, 1431–1450 (2018). https://doi.org/10.1002/oca.2419

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhookya, J.; Jatoth, R.K.: Optimal FOPID/PID controller parameters tuning for the AVR system based on sine–cosine-algorithm. Evol. Intell. 12, 725–733 (2019). https://doi.org/10.1007/s12065-019-00290-x

    Article  Google Scholar 

  11. Shah, P.; Agashe, S.: Review of fractional PID controller. Mechatronics. 38, 29–41 (2016). https://doi.org/10.1016/j.mechatronics.2016.06.005

    Article  Google Scholar 

  12. Izci, D.; Ekinci, S.: Comparative performance analysis of slime mould algorithm for efficient design of proportional–integral–derivative controller. Electrica. 21, 151–159 (2021). https://doi.org/10.5152/electrica.2021.20077

    Article  Google Scholar 

  13. Hekimoglu, B.: Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. IEEE Access. 7, 38100–38114 (2019). https://doi.org/10.1109/ACCESS.2019.2905961

    Article  Google Scholar 

  14. Bozorgi, A.M.; Fereshtehpoor, V.; Monfared, M.; Namjoo, N.: Controller design using ant colony algorithm for a non-inverting buck-boost chopper based on a detailed average model. Electr. Power Components Syst. 43, 177–188 (2015). https://doi.org/10.1080/15325008.2014.975385

    Article  Google Scholar 

  15. Mini, M.; Suresh, L.P.: Comparative evaluation of bio-inspired controller for a buck-boost converter. Aust. J. Basic Appl. Sci. 9, 361–366 (2015)

    Google Scholar 

  16. Tulay, G.; İskender, İ; Erdem, H.: Optimal tuning of a boost PFC converter PI controller using heuristic optimization methods. Int. Trans. Electr. Energy Syst. 27, e2458 (2017). https://doi.org/10.1002/etep.2458

    Article  Google Scholar 

  17. Banerjee, S.; Ghosh, A.; Rana, N.: An improved interleaved boost converter with PSO-based optimal type-III controller. IEEE J. Emerg. Sel. Top. Power Electron. 5, 323–337 (2017). https://doi.org/10.1109/JESTPE.2016.2608504

    Article  Google Scholar 

  18. Ekinci, S.; Hekimoglu, B.; Eker, E.; Sevim, D.: Hybrid firefly and particle swarm optimization algorithm for PID controller design of buck converter. In: 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2019 - Proceedings. pp. 1–6 (2019)

  19. Izci, D.; Ekinci, S.; Orenc, S.; Demiroren, A.: Improved artificial electric field algorithm using nelder-mead simplex method for optimization problems. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). pp. 1–5. IEEE (2020)

  20. Eker, E.; Kayri, M.; Ekinci, S.; Izci, D.: A new fusion of ASO with SA algorithm and its applications to MLP training and DC motor speed control. Arab. J. Sci. Eng. 46, 3889–3911 (2021). https://doi.org/10.1007/s13369-020-05228-5

    Article  Google Scholar 

  21. Houssein, E.H.; Saad, M.R.; Hashim, F.A.; Shaban, H.; Hassaballah, M.: Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 94, 103731 (2020). https://doi.org/10.1016/j.engappai.2020.103731

    Article  Google Scholar 

  22. Ekinci, S.; Hekimoğlu, B.; Izci, D.: Opposition based Henry gas solubility optimization as a novel algorithm for PID control of DC motor. Eng. Sci. Technol. an Int. J. 24, 331–342 (2021). https://doi.org/10.1016/j.jestch.2020.08.011

    Article  Google Scholar 

  23. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by simulated annealing. Science. (80-.)220, 671–680 (1983). https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  24. Mafarja, M.M.; Mirjalili, S.: Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 260, 302–312 (2017). https://doi.org/10.1016/j.neucom.2017.04.053

    Article  Google Scholar 

  25. Sayed, G.I.; Hassanien, A.E.: A hybrid SA-MFO algorithm for function optimization and engineering design problems. Complex Intell. Syst. 4, 195–212 (2018). https://doi.org/10.1007/s40747-018-0066-z

    Article  Google Scholar 

  26. Çelik, E.; Öztürk, N.: A hybrid symbiotic organisms search and simulated annealing technique applied to efficient design of PID controller for automatic voltage regulator. Soft Comput. 22, 8011–8024 (2018). https://doi.org/10.1007/s00500-018-3432-2

    Article  Google Scholar 

  27. Pan, X.; Xue, L.; Lu, Y.; Sun, N.: Hybrid particle swarm optimization with simulated annealing. Multimed. Tools Appl. 78, 29921–29936 (2019). https://doi.org/10.1007/s11042-018-6602-4

    Article  Google Scholar 

  28. Gupta, S.; Deep, K.: A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons. Appl. Intell. 50, 993–1026 (2020). https://doi.org/10.1007/s10489-019-01570-w

    Article  Google Scholar 

  29. Kurtuluş, E.; Yıldız, A.R.; Sait, S.M.; Bureerat, S.: A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails. Mater. Test. 62, 251–260 (2020). https://doi.org/10.3139/120.111478

    Article  Google Scholar 

  30. Nayak, J.R.; Shaw, B.; Sahu, B.K.: Implementation of hybrid SSA-SA based three-degree-of-freedom fractional-order PID controller for AGC of a two-area power system integrated with small hydro plants. IET Gener. Transm. Distrib. 14, 2430–2440 (2020). https://doi.org/10.1049/iet-gtd.2019.0113

    Article  Google Scholar 

  31. Micev, M.; Ćalasan, M.; Ali, Z.M.; Hasanien, H.M.; Abdel Aleem, S.H.E.: Optimal design of automatic voltage regulation controller using hybrid simulated annealing: Manta ray foraging optimization algorithm. Ain Shams Eng. J. (2020). https://doi.org/10.1016/j.asej.2020.07.010

    Article  Google Scholar 

  32. Shahidul Islam, M.; Rafiqul Islam, M.: A hybrid framework based on genetic algorithm and simulated annealing for RNA structure prediction with pseudoknots. J. King Saud Univ. - Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.03.005

    Article  Google Scholar 

  33. Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  34. Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks. pp. 1942–1948. IEEE (1995)

  35. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  36. Javidrad, F.; Nazari, M.: A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl. Soft Comput. J. 60, 634–654 (2017). https://doi.org/10.1016/j.asoc.2017.07.023

    Article  Google Scholar 

  37. Michiels, W.; Aarts, E.; Korst, J.: Theoretical Aspects of Local Search. Springer, Berlin (2007)

    MATH  Google Scholar 

  38. Schneider, J.J.; Puchta, M.: Investigation of Acceptance Simulated Annealing: A Simplified Approach to Adaptive Cooling Schedules. Phys. A Stat. Mech. Appl. 389, 5822–5831 (2010). https://doi.org/10.1016/j.physa.2010.08.045

    Article  Google Scholar 

  39. Hajek, B.: Cooling Schedules for Optimal Annealing. Math. Oper. Res. 13, 311–329 (1988). https://doi.org/10.1287/moor.13.2.311

    Article  MathSciNet  MATH  Google Scholar 

  40. Smedley, K.; Ćuk, S.: Switching Flow-Graph Nonlinear Modeling Technique. IEEE Trans. Power Electron. 9, 405–413 (1994). https://doi.org/10.1109/63.318899

    Article  Google Scholar 

  41. Kuo, B.C.: Automatic Control Systems. Wiley, New York (2003)

    Google Scholar 

  42. Ekinci, S.; Hekimoğlu, B.; Demiroren, A.; Kaya, S.: Harris hawks optimization approach for tuning of fopid controller in DC-DC buck converter. In: 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. pp. 1–9 (2019)

  43. Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circuits Syst I Fundam. Theory Appl. 47, 25–39 (2000). https://doi.org/10.1109/81.817385

    Article  Google Scholar 

  44. Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19, 384–391 (2004). https://doi.org/10.1109/TEC.2003.821821

    Article  Google Scholar 

  45. Dorf, R.C.: Modern Control Systems. Pearson, Boston (2011)

    MATH  Google Scholar 

  46. Hekimoǧlu, B.; Ekinci, S.; Kaya, S.: Optimal PID controller design of DC-DC buck converter using whale optimization algorithm. In: 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018. pp. 1–6 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Ekinci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izci, D., Ekinci, S. & Hekimoğlu, B. Fractional-Order PID Controller Design for Buck Converter System via Hybrid Lévy Flight Distribution and Simulated Annealing Algorithm. Arab J Sci Eng 47, 13729–13747 (2022). https://doi.org/10.1007/s13369-021-06383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06383-z

Keywords

Navigation