Skip to main content
Log in

Channel Estimation of Massive MIMO-OFDM System Using Elman Recurrent Neural Network

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bandwidth limitations in the wireless communication bands have motivated the investigation and exploration of wireless access technologies like massive multiple-input multiple-output (MIMO) networks. The performance of MIMO networks dramatically depends upon the techniques exploited for channel estimations. The existing methods of channel estimation have failed to resolve the inter-symbol interference (ISI) effects efficiently. This paper presents a new channel estimation method based on machine learning. The presence of ISI in the MIMO-orthogonal frequency division multiplexing (MIMO-OFDM) network introduces errors in the decision device at the receiver. This study aims to limit the impact of ISI in the transmitting and receiving filter designs to convey digital data with the lowest error rate. The Elman recurrent neural network (E-RNN) algorithm was employed herein to estimate the channel in MIMO-OFDM considering reliability and scalability. A low peak-to-average power ratio (PAPR), reduced bit error rate (BER), high capacity, high throughput, and improved mean squared error (MSE) performance are achieved using the E-RNN approach. The obtained PAPR value for the proposed E-RNN is 0.1272 after 40 epochs. Variations of cumulative distribution function (CDF) for various channel capacities are plotted. Also, these channel estimation parameters exploiting recurrent neural network (RNN), artificial neural network (ANN), convolutional neural network (CNN), and deep neural network (DNN) methods are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee, D.: MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Commun. Lett. 20(10), 2115–2118 (2016). https://doi.org/10.1109/LCOMM.2016.2594059

    Article  Google Scholar 

  2. Prasad, R.; Murthy, C.R.; Rao, B.D.: Joint channel estimation and data detection in MIMO-OFDM systems: a sparse Bayesian learning approach. IEEE Trans. Signal Process. 63(20), 5369–5382 (2015). https://doi.org/10.1109/TSP.2015.2451071

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhou, Z.; Fang, J.; Yang, L.; Li, H.; Chen, Z.; Blum, R.S.: Low-rank tensor decomposition-aided channel estimation for millimeter-wave MIMO-OFDM systems. IEEE J. Select. Areas Commun. 35(7), 1524–1538 (2017). https://doi.org/10.1109/JSAC.2017.2699338

    Article  Google Scholar 

  4. Park, S.; Shim, B.; Choi, J.W.: Iterative channel estimation using virtual pilot signals for MIMO-OFDM systems. IEEE Trans. Signal Process. 63(12), 3032–3045 (2015). https://doi.org/10.1109/TSP.2015.2416684

    Article  MathSciNet  MATH  Google Scholar 

  5. You, L.; Gao, X.; Swindlehurst, A.L.; Zhong, W.: Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots. IEEE Trans. Signal Process. 64(6), 1461–1476 (2015). https://doi.org/10.1109/TSP.2015.2502550

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, S.; Kuang, L.; Ni, Z.; Huang, D.; Guo, Q.; Lu, J.: Message-passing receiver for joint channel estimation and decoding in 3D massive MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 15(12), 8122–8138 (2016). https://doi.org/10.1109/TWC.2016.2612629

    Article  Google Scholar 

  7. Dey, A., Jain, S., Nandi, S.: New method of POS based on artificial intelligence and cloud computing. In: International Conference on Recent Advances in Energy-Efficient Computing and Communication (ICRAECC), pp. 1-6, (2019) doi: https://doi.org/10.1109/ICRAECC43874.2019.8995078

  8. Toet, A.: Computational versus psychophysical image saliency: a comparative evaluation study. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2131–2146 (2011)

    Article  Google Scholar 

  9. Shafin, R.; Liu, L.; Zhang, J.; Wu, Y.C.: DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FD-MIMO OFDM systems. IEEE Trans. Wirel. Commun. 15(10), 6963–6978 (2016). https://doi.org/10.1109/TWC.2016.2594173

    Article  Google Scholar 

  10. Chen, L.; Yuan, X.: Massive MIMO-OFDM channel estimation via structured turbo compressed sensing. IEEE Int. Conf. Commun. 2018, 1–6 (2018). https://doi.org/10.1109/ICC.2018.8422538

    Article  Google Scholar 

  11. Gao, Z.; Hu, C.; Dai, L.; Wang, Z.: Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun. Lett. 20(6), 1259–1262 (2016). https://doi.org/10.1109/LCOMM.2016.2555299

    Article  Google Scholar 

  12. Lin, X.; Wu, S.; Jiang, C.; Kuang, L.; Yan, J.; Hanzo, L.: Estimation of broadband multiuser millimeter wave massive MIMO-OFDM channels by exploiting their sparse structure. IEEE Trans. Wirel. Commun. 17(6), 3959–3973 (2018). https://doi.org/10.1109/TWC.2018.2818142

    Article  Google Scholar 

  13. Jayanthi, P.N., Ravishankar, S.: Sparse channel estimation for MIMO-OFDM systems using compressed sensing. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, pp. 1060–1064 (2016) https://doi.org/10.1109/RTEICT.2016.7807993

  14. Ketonen, J.; Juntti, M.; Ylioinas, J.; Cavallaro, J.R.: Decision-directed channel estimation implementation for spectral efficiency improvement in mobile MIMO-OFDM. J. Signal Process. Syst. 79(3), 233–245 (2015). https://doi.org/10.1007/s11265-013-0833-4

    Article  Google Scholar 

  15. Yuan, Z.; Zhang, C.; Wang, Z.; Guo, Q.; Xi, J.: An auxiliary variable-aided hybrid message passing approach to joint channel estimation and decoding for MIMO-OFDM. IEEE Signal Process. Lett. 24(1), 12–16 (2016). https://doi.org/10.1109/LSP.2016.2632180

    Article  Google Scholar 

  16. Zhang, Y.; Wang, D.; Wang, J.; You, X.: Channel estimation for massive MIMO-OFDM systems by tracking the joint angle-delay subspace. IEEE Access 4, 10166–10179 (2016). https://doi.org/10.1109/ACCESS.2016.2634025

    Article  Google Scholar 

  17. Manzoor, S., Bamuhaisoon, A.S., Alifa, A.N.: Channel estimation for MIMO-OFDM systems. In: 2015 5th National Symposium on Information Technology: Towards New Smart World, pp.1–7 (2015) https://doi.org/10.1109/NSITNSW.2015.7176415

  18. Jakubisin, D.J.; Buehrer, R.M.; da Silva, C.R.: BP, MF, and EP for joint channel estimation and detection of MIMO-OFDM signals. IEEE Global Commun. Conf. 2016, 1–6 (2016). https://doi.org/10.1109/GLOCOM.2016.7841640

    Article  Google Scholar 

  19. Zhu, P., Tong, W., Ma, J., Jia, M.: Scattered pilot pattern and channel estimation method for MIMO-OFDM systems (Patent No. 8,971,169). U. S. Patents and Trademark Office. (2015) http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=8,971,169ables

  20. Krishna, E.H., Sivani, K., Reddy, K.A.: OFDM channel estimation and equalization using multi scale independent component analysis. In: 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems, pp. 1–5. (2015) https://doi.org/10.1109/SPICES.2015.7091408

  21. Chen, H.; Zhang, R.; Zhai, W.; Liang, X.; Song, G.: Interference-free pilot design and channel estimation using ZCZ sequences for MIMO-OFDM-based C-V2X communications. China Commun. 15(7), 47–54 (2018). https://doi.org/10.1109/CC.2018.8424582

    Article  Google Scholar 

  22. Araújo, D.C.; De Almeida, A.L.; Da Costa, J.P.; de Sousa, R.T.: Tensor-based channel estimation for massive MIMO-OFDM systems. IEEE Access 7, 42133–42147 (2019). https://doi.org/10.1109/ACCESS.2019.2908207

    Article  Google Scholar 

  23. Kaur, H.; Khosla, M.; Sarin, R.K.: Hybrid type-2 fuzzy based channel estimation for MIMO-OFDM system with Doppler offset influences. Wirel. Personal Commun. 108(2), 1131–1143 (2019). https://doi.org/10.1007/s11277-019-06460-5

    Article  Google Scholar 

  24. Li, M.; Liu, W.; Tian, X.; Wang, Z.; Liu, Q.: Iterative hybrid precoder and combiner design for mmWave MIMO-OFDM systems. Wirel. Netw. 25(8), 4829–4837 (2019). https://doi.org/10.1007/s11276-018-1748-6

    Article  Google Scholar 

  25. Liao, Y.; Hua, Y.; Cai, Y.: Deep learning based channel estimation algorithm for fast time-varying MIMO-OFDM systems. IEEE Commun. Lett. 24(3), 572–576 (2019). https://doi.org/10.1109/LCOMM.2019.2960242

    Article  Google Scholar 

  26. Kapoor, D.S.; Kohli, A.K.: Channel estimation and long range prediction of fast fading channels for adaptive OFDM system. Int. J. Electr. 105(9), 1451–1466 (2018). https://doi.org/10.1080/00207217.2018.1460871

    Article  Google Scholar 

  27. Palanimuthu, S.J.; Muthial, C.: An enhanced multi-channel bacterial foraging optimization algorithm for MIMO communication system. Int. J. Electr. 104(4), 608–623 (2016). https://doi.org/10.1080/00207217.2016.1242027

    Article  Google Scholar 

  28. Hu, F.; Du, D.; Zhang, P.; Wang, Z.: A joint swarm intelligence algorithm for multiuser detection in MIMO-OFDM system. Int. J. Electr. 101(11), 1478–1494 (2014). https://doi.org/10.1080/00207217.2013.869769

    Article  Google Scholar 

  29. Nandi, S.; Pathak, N.N.; Nandi, A.: Analysis of hard decision and soft decision decoding mechanism using Viterbi decoder in presence of different adaptive modulations. Int. J. Future Gener. Commun. Netw. 13(3), 3002–3012 (2020)

    Google Scholar 

  30. Xu, W., Zhao, Y.: Reducing MMV-based OMP channel estimation for massive MIMO OFDM systems. In: 2019 International Conference on Communications, Information System and Computer Engineering, pp. 289–293. (2019). https://doi.org/10.1109/CISCE.2019.00072

  31. Nandi, S.; Nandi, A.; Pathak, N.N.; Sarkar, M.: Performance analysis of cyclic prefix OFDM using adaptive modulation techniques. Int. J. Electr. Electr. Comput. Syst. 6(8), 214–220 (2017)

    Google Scholar 

  32. Nandi, S.; Pathak, N.N.; Nandi, A.: Efficacy of channel estimation and efficient use of spectrum using optimised cyclic prefix (CP) in MIMO-OFDM. Int. J. Eng. Adv. Technol. 9(2), 3032–3038 (2019)

    Article  Google Scholar 

  33. Nandi, S.; Nandi, A.; Pathak, N.N.: Performance analysis of Alamouti STBC MIMO OFDM for different transceiver system. IEEE Int. Conf. Intell. Sustain. Syst. 2017, 883–887 (2017). https://doi.org/10.1109/ISS1.2017.8389305

    Article  Google Scholar 

  34. Nandi, S.; Pathak, N.N.; Nandi, A.: A novel adaptive optimized fast blind channel estimation for cyclic prefix assisted space-time block coded MIMO OFDM systems. Wirel. Personal Commun. (2020). https://doi.org/10.1007/s11277-020-07629-z

    Article  Google Scholar 

  35. Shankar, R.; Nandi, S.; Rupani, A.: Channel capacity analysis of non-orthogonal multiple access and massive multiple-input multiple-output wireless communication networks considering perfect and imperfect channel state information. J. Defense Model. Simul. (2021). https://doi.org/10.1177/15485129211000139

    Article  Google Scholar 

  36. Liao, Y.; Hua, Y.; Dai, X.; Yao, H.; Yang, X.: Chanestnet: a deep learning based channel estimation for high-speed scenarios. IEEE Int. Conf. Commun. 2019, 1–6 (2019). https://doi.org/10.1109/ICC.2019.8761312

    Article  Google Scholar 

  37. Dong, P.; Zhang, H.; Li, G.Y.; Gaspar, I.S.; NaderiAlizadeh, N.: Deep CNN-based channel estimation for mmWave massive MIMO systems. IEEE J. Select. Topics Signal Process. 13(5), 989–1000 (2019). https://doi.org/10.1109/JSTSP.2019.2925975

    Article  Google Scholar 

  38. Sarma, K.K.; Mitra, A.: ANN based Rayleigh multipath fading channel estimation of a MIMO-OFDM system. IEEE First Asian Himalayas Int. Conf. Internet 2009, 1–5 (2009). https://doi.org/10.1109/AHICI.2009.5340306

    Article  Google Scholar 

  39. Şeker, S.; Ayaz, E.; Türkcan, E.: Elman’s recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery. Eng. Appl. Artif. Intell. 16(7–8), 647–656 (2003). https://doi.org/10.1016/j.engappai.2003.10.004

    Article  Google Scholar 

  40. El-Sousy, F.F.: Intelligent optimal recurrent wavelet elman neural network control system for permanent-magnet synchronous motor servo drive. IEEE Trans. Ind. Inf. 9(4), 1986–2003 (2012). https://doi.org/10.1109/TII.2012.2230638

    Article  Google Scholar 

  41. Solovyeva, E.: Recurrent neural networks as approximators of nonlinear filters operators. J. Phys. Conf. Ser. 1141, 012115 (2018). https://doi.org/10.1088/1742-6596/1141/1/012115

    Article  Google Scholar 

  42. Nguyen, C.; Cheema, A.A.: A deep neural network-based multi-frequency path loss prediction model from 0.8 GHz to 70 GHz. Sensors 21(15), 5100 (2021). https://doi.org/10.3390/s21155100

    Article  Google Scholar 

  43. Madhumita, S.; Shila, G.: Development of a secured optical code-division multiple access system by implementing hybrid 2D-modified Walsh code. Opt. Eng. 59(10), 106107 (2020). https://doi.org/10.1117/1.OE.59.10.106107

    Article  Google Scholar 

  44. Elman, J.L.: Finding structure in time. Cogn. Sci. 14, 179–211 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shovon Nandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S., Nandi, A. & Pathak, N.N. Channel Estimation of Massive MIMO-OFDM System Using Elman Recurrent Neural Network. Arab J Sci Eng 47, 9755–9765 (2022). https://doi.org/10.1007/s13369-021-06366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06366-0

Keywords

Navigation