Skip to main content
Log in

Hydrothermal Synthesis of Nitrogen and Iron-Doped ZnO/MWCNTs Nanocomposites for Enhanced Photocatalytic Performance

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A hydrothermal method is used to prepare iron and nitrogen-doped zinc oxide/multi-walled carbon nanotubes composite by applying microwave irradiation. The crystallite size obtained by the X-ray diffraction analysis is 17.26–22.74 nm. Analysis of UV–Vis and photoluminescence spectroscopic analysis shows the deviation in band-gap energy from 3.10 to 2.10 eV and recombination of electron–hole velocity through the mounting proportion of iron. Elucidation of nitrogen adsorption–desorption isotherm affirms the existence of a mesoporous structure with an 8.09 nm pore diameter and 523.307 m2/g surface area. Transmission electron microscope and scanning electron microscope images express the nano-scale dimensions with a bunch kind of agglomerated nanotubes with 30–40 nm diameters. Energy-dispersive X-ray spectroscopy discloses the existence of all elements such as C, Fe, N, O, and Zn in the composite samples. The occurrence of some functional groups in pure and composite samples is analyzed by Fourier-transform infrared spectroscopy. The formed nanocomposite of nitrogen, iron, ZnO, and MWCNT perform a powerful photo-degradation against congo red and methylene blue dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shivajirao, P.A.: Treatment of distillery wastewater using membrane technologies. Int. J. Adv. Eng. Res. Stud. (2012). ISSN: 2249-8974

  2. Khan, M.I.: Investigations of structural, morphological and optical properties of Cu:ZnO/TiO2/ZnO and Cu:TiO2/ZnO/TiO2 thin films prepared by spray pyrolysis technique. Res. Phys. (2017). https://doi.org/10.1016/j.rinp.2017.08.038

    Article  Google Scholar 

  3. Tripathy, N.; Ahmad, R.; KuK, H.; Hahn, Y.B.; Khang, G.: Mesoporous ZnO nanoclusters as an ultra-active photocatalyst. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.03.030

    Article  Google Scholar 

  4. Chauhan, N.; Singh, V.; Kumar, S.; Kumari, M.; Sirohi, K.: Preparation of silver and nitrogen codoped mesoporous zinc oxide nanoparticles by evaporation induced self assembly process to study their photocatalytic activity. J. Sol-Gel. Sci. Technol. (2019). https://doi.org/10.1007/s10971-019-04969-6

    Article  Google Scholar 

  5. He, H.Y.: Photocatalytic and Fenton-like photocatalytic activity of C-doped ZnO nanoparticles in the degradation of malachite green in a water. Micro Nanosyst. (2014). https://doi.org/10.2174/1876402906666140912005237

    Article  Google Scholar 

  6. Bhardwaj, P.; Kaushik, S.; Gairola, P.; Gairola, S.P.: Polyaniline enfolded hybrid carbon array substrate electrode for high performance supercapacitors. J. Polym. Eng. (2019). https://doi.org/10.1515/polyeng-2018-0292

    Article  Google Scholar 

  7. Bhardwaj, P.; Grace, A.N.: Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite. Diam. Relat. Mater. (2020). https://doi.org/10.1016/j.diamond.2020.107871

    Article  Google Scholar 

  8. Sharma, A.K.; Bhardwaj, P.; Dhawan, S.K.; Sharma, Y.: Oxidative synthesis and electrochemical studies of poly(aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv. Mater. Lett. (2015). https://doi.org/10.5185/amlett.2015.5690

    Article  Google Scholar 

  9. Sharma, A.K.; Chaudhary, G.; Bhardwaj, P.; Kaushal, I.; Duhan, S.: Studies on metal doped polyaniline-carbon nanotubes composites for high performance supercapacitor. Curr. Anal. Chem. (2017). https://doi.org/10.2174/1573411012666160624080450

  10. Bhardwaj, P.; Kaushik, S.; Gairola, P.; Gairola, S.P.: Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for suppression of electromagnetic radiation. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-018-0115-7

    Article  Google Scholar 

  11. Bhardwaj, P.; Kaushik, S.; Gairola, P.; Gairola, S.P.: Exceptional electromagnetic radiation shielding performance and dielectric properties of surfactant assisted polypyrrole-carbon allotropes composites. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.06.001

    Article  Google Scholar 

  12. Sharma, A.K., et al.: Improved microwave shielding properties of polyaniline grown over three-dimensional hybrid carbon assemblage substrate. Appl. Nanosci. J. Energy Chem. (2015). https://doi.org/10.1007/s13204-014-0362-x

    Article  Google Scholar 

  13. Chaudhary, G., et al.: NiCo2O4 decorated PANI–CNTs composites as supercapacitive electrode materials. J. Energy Chem. (2016). https://doi.org/10.1016/j.jechem.2016.09.013

    Article  Google Scholar 

  14. Singh, B.P., et al.: Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites. Appl. Nanosci. (2014). https://doi.org/10.1007/s13204-013-0214-0

    Article  Google Scholar 

  15. Kharangarh, P.R., et al.: An efficient pseudocapacitor electrode material with co-doping of iron (II) and sulfur in luminescent graphene quantum dots. Diam. Rela. Mater. (2020). https://doi.org/10.1016/j.diamond.2020.107913

  16. Paul, A.M., et al.: Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction. Diam. Relat. Mater. (2020). https://doi.org/10.1016/j.diamond.2020.107899

    Article  Google Scholar 

  17. Bhardwaj, P.; Singh, S., et al.: Surfactant decorated polypyrrole-carbon materials composites electrodes for supercapacitor. Diam. Relat. Mater. (2020). https://doi.org/10.1016/j.diamond.2020.107989

    Article  Google Scholar 

  18. Nivetha, R., et al.: Highly porous MIL-100(Fe) for the hydrogen evolution reaction (HER) in acidic and basic media. ACS Omega (2020). https://doi.org/10.1021/acsomega.0c02171

    Article  Google Scholar 

  19. Nivetha, R., et al.: Cu based metal organic framework (Cu-MOF) for electrocatalytic hydrogen evolution reaction. Mater. Res. Expr. (2020). https://doi.org/10.1088/2053-1591/abb056

    Article  Google Scholar 

  20. Chauhan, N.; Singh, V.; Kumar, S.; Sirohi, K.; Siwatch, S.: Synthesis of nitrogen- and cobalt-doped rod-like mesoporous ZnO nanostructures to study their photocatalytic activity. J. Sol-Gel. Sci. Technol. (2019). https://doi.org/10.1007/s10971-019-05059-3

    Article  Google Scholar 

  21. Azqhandi, M.H.A.; Rajabi, F.H.; Keramati, M.: Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study. Res. Phys. (2017). https://doi.org/10.1016/j.rinp.2017.02.033

  22. Okeil, S.; Krausmann, J.; Donges, I.; Pfleger, S.; Engstler, J.; Schneider, J.J.: ZnS/ZnO@CNT and ZnS@CNT nanocomposites by gas phase conversion of ZnO@CNT. A systematic study of their photocatalytic properties. Dalton Trans. (2017). https://doi.org/10.1039/C7DT00407A

  23. Elias, M.; Uddin, M.N.; Saha, J.K.; Hossain, M.A.; Sarker, D.R.; Akter, S.; Siddiquey, I.A.; Uddin, J.: A Highly efficient and stable photocatalyst; N-doped ZnO/CNT composite thin film synthesized via simple sol–gel drop coating method. Molecules (2021). https://doi.org/10.3390/molecules26051470

    Article  Google Scholar 

  24. Saleh, T.A.; Gondal, M.A.; Drmosh, Q.: Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology (2010). https://doi.org/10.1088/0957-4484/21/49/495705

    Article  Google Scholar 

  25. Jing, W.; Yao, S.; Li, X.: Sol–gel Preparation of CNT/ZnO nanocomposite and its photocatalytic property. Chin. J. Chem. (2009). https://doi.org/10.1002/cjoc.200990220

  26. Reddy, M.M.; Reddy, G.R.; Chennakesavulu, K.; Sundaravadivel, E.; Prasath, S.S.; Rabel, A.M.; Sreeramulu, J.: Synthesis of zinc oxide and carbon nanotube composites by CVD method: photocatalytic studies. J. Porous Mater. (2017). https://doi.org/10.1007/s10934-016-0247-3

    Article  Google Scholar 

  27. Dalt, S.D.; Alves, A.K.; Bergmann, C.P.: Preparation and performance of TiO2–ZnO/CNT hetero-nanostructures applied to photodegradation of organic dye. Mater. Res. (2016). https://doi.org/10.1590/1980-5373-MR-2016-0036

    Article  Google Scholar 

  28. Elias, M.; Akter, S.; Hossain, M.A.; Suhag, M.H.: Fabrication of Zn3(PO4)2/carbon nanotubes nanocomposite thin film via sol–gel drop coating method with enhanced photocatalytic activity. Thin Solid Film (2021). https://doi.org/10.1016/j.tsf.2020.138472

    Article  Google Scholar 

  29. Bu, I.Y.Y.: Optoelectronic properties of solution synthesis of carbon nanotube/ZnO:Al:N nanocomposite and its potential as a photocatalyst. Mater. Sci. Semicond. Process. (2014). https://doi.org/10.1016/j.mssp.2014.01.043

    Article  Google Scholar 

  30. Liu, P.; Guo, Y.; Xu, Q.; Wang, F.; Li, Y.; Shao, K.: Enhanced photocatalytic performance of ZnO/multi-walled carbon nanotube nanocomposites for dye degradation. Ceram. Inter. (2014). https://doi.org/10.1016/j.ceramint.2013.10.157

    Article  Google Scholar 

  31. Ahmad, M.; Ahmed, E.; Hong, Z.L.; Ahmed, W.; Elhissi, A.; Khalid, N.R.: Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine-B using ZnO/CNTs composites photocatalysts. Ultrason. Sonochem. (2014). https://doi.org/10.1016/j.ultsonch.2013.08.014

    Article  Google Scholar 

  32. Saleh, T.A.; Gondal, M.; Drmosh, Q.; Yamani, Z.; Yamani, A.A.: Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem. Eng. J. (2011). https://doi.org/10.1016/j.cej.2010.10.070

    Article  Google Scholar 

  33. Escobar, M.; Moreno, M.S.; Candal, R.J.; Marchi, M.C.; Caso, A.; Polosecki, P.I.; Rubiolo, G.H.; Goyanes, S.: Synthesis of carbon nanotubes by CVD: effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. (2007). https://doi.org/10.1016/j.apsusc.2007.07.044

    Article  Google Scholar 

  34. Chauhan, N.; Singh, V.; Kumar, S.; Dhiman, R.L.: Influence of nickel, silver, and sulphur doping on the photocatalytic efficiency of mesoporous ZnO nanoparticles. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-04291-x

    Article  Google Scholar 

  35. Bindu, P.; Thomas, S.: Estimation of lattice strain in ZnO nanoparticles X-ray peak profile analysis. J. Theor. Appl. Phys. (2014). https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  36. Putz, A.M.; Len, A.; Ianasi, C.; Savii, C.; Almasy, L.: Ultrasonic preparation of mesoporous silica using pyridinium ionic liquid. Korean J. Chem. Eng. (2016). https://doi.org/10.1007/s11814-016-0021-x20

    Article  Google Scholar 

  37. Goh, E.G.; Xu, X.; Mc Cormick, P.G.: Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr. Mater. (2014). https://doi.org/10.1016/j.scriptamat.2014.01.033

  38. Kazeminezhad, S.S.; Youselfi, R.: Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles. Bull. Mater. Sci. (2016). https://doi.org/10.1007/s12034-016-1206-y I

  39. Katiyar, A.; Kumar, N.; Srivastava, A.: Optical properties of ZnO nanoparticles synthesized by co-precipitation method using LiOH. Mater. Today Proc. (2018). https://doi.org/10.1016/j.matpr.2017.10.034

    Article  Google Scholar 

  40. Manzoor, M.; Rafq, A.; Ikram, M.; Nafees, M.; Ali, S.: Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method. Int. Nano Lett. (2018). https://doi.org/10.1007/s40089-018-0225-7

    Article  Google Scholar 

  41. Attri, P.; Kim, Y.H.; Park, D.H.; Park, J.H.; Hong, Y.J.; Uhm, H.S.; Kim, K.N.; Fridman, A.; Choi, E.H.: Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. (2015). https://doi.org/10.1038/srep09332

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Chauhan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3261 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N., Singh, V., Kumar, S. et al. Hydrothermal Synthesis of Nitrogen and Iron-Doped ZnO/MWCNTs Nanocomposites for Enhanced Photocatalytic Performance. Arab J Sci Eng 47, 6989–6999 (2022). https://doi.org/10.1007/s13369-021-06280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06280-5

Keywords

Navigation