Skip to main content
Log in

3-D Rock-Physics Templates for the Seismic Prediction of Pore Microstructure in Ultra-Deep Carbonate Reservoirs

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ultra-deep carbonate reservoirs have low porosity, a complex pore space with microcracks of varying aspect ratio and dissolved pores, that affect the seismic and transport properties. We propose a rock-physics model based on penny-shaped inclusions in the framework of the double-porosity theory to estimate rock features, such as the crack porosity and aspect ratio, and stiff porosity. Based on this model, a 3-D rock-physics template is built, calibrated at the ultrasonic and seismic frequency bands, from attenuation, P-wave impedance and VP/VS ratio to quantitatively evaluate the effect of those features. Attenuation is estimated by using the spectral-ratio and improved frequency-shift methods. The template is applied to ultra-deep carbonates of the S work area of the Tarim Basin (China). The predictions agree with the well-log data and field production reports. In general, the higher the crack aspect ratio, the higher the storage and transport capacity of the reservoir. Therefore, these crack features can be used as indicators of these reservoir properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11
Fig. 12.
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zou, C.; Hou, L.; Hu, S.; Zhu, R.; Liu, S.; Yang, Z.; Zhidong, G.; Yang, F.; Yang, C.: Prospect of ultra-deep petroleum onshore China. Energy Explor. Exploit. 32, 19–40 (2014). https://doi.org/10.1260/0144-5987.32.1.19

    Article  Google Scholar 

  2. Lan, X.; Lü, X.; Zhu, Y.; Yu, H.: The geometry and origin of strike-slip faults cutting the Tazhong low rise megaanticline (central uplift, Tarim Basin, China) and their control on hydrocarbon distribution in carbonate reservoirs. J. Nat. Gas Sci. Eng. 22, 633–645 (2015). https://doi.org/10.1016/j.jngse.2014.12.030

    Article  Google Scholar 

  3. Emami Niri, M.; Mehmandoost, F.; Nosrati, H.: Pore-type identification of a heterogeneous carbonate reservoir using rock physics principles: a case study from south-west Iran. Acta Geophys. 1, 3 (2021). https://doi.org/10.1007/s11600-021-00602-9

    Article  Google Scholar 

  4. Mazullo, S.J.; Harris, P.M.: An overview of dissolution porosity development in the deep-burial environment, with examples from carbonate reservoirs in the Permian Basin. Permian Basin Play. Tomorrow’s Technol. Today. 91–89, 125–138 (1991)

    Google Scholar 

  5. Pang, X.; Tian, J.; Pang, H.; Xiang, C.; Jiang, Z.; Li, S.: Main progress and problems in research on Ordovician hydrocarbon accumulation in the Tarim Basin. Pet. Sci. 7, 147–163 (2010). https://doi.org/10.1007/s12182-010-0022-z

    Article  Google Scholar 

  6. Esteban, M.; Taberner, C.: Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines. J. Geochem. Explor. 78–79, 355–359 (2003). https://doi.org/10.1016/S0375-6742(03)00111-0

    Article  Google Scholar 

  7. Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M.: Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale. J. Sediment. Res. 79, 848–861 (2009). https://doi.org/10.2110/jsr.2009.092

    Article  Google Scholar 

  8. Chalmers, G.R.; Bustin, R.M.; Power, I.M.: Characterization of gas shale pore systems by porosimetry, pycnometry, surfacearea, andfield emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, andDoig units. Am. Assoc. Pet. Geol. Bull. 96, 1099–1119 (2012). https://doi.org/10.1306/10171111052

    Article  Google Scholar 

  9. Ba, J.; Ma, R.; Carcione, J.M.; Picotti, S.: Ultrasonic wave attenuation dependence on saturation in tight oil siltstones. J. Pet. Sci. Eng. 179, 1114–1122 (2019). https://doi.org/10.1016/j.petrol.2019.04.099

    Article  Google Scholar 

  10. Ma, R.P.; Ba, J.; Carcione, J.M.; Zhou, X.; Li, F.: Dispersion and attenuation of compressional waves in tight oil reservoirs: Experiments and simulations. Appl. Geophys. 16, 33–45 (2019). https://doi.org/10.1007/s11770-019-0748-3

    Article  Google Scholar 

  11. Smith, T.M.; Sayers, C.M.; Sondergeld, H.C.: Rock properties in low-porosity/low-permeability sandstones. Lead. Edge. 28, 1–5 (2009)

    Article  Google Scholar 

  12. Vernik, L.; Kachanov, M.: Modeling elastic properties of siliciclastic rocks. Geophysics (2010). https://doi.org/10.1190/1.3494031

    Article  Google Scholar 

  13. Sakhaee-Pour, A.; Bryant, S.L.: Effect of pore structure on the producibility of tight-gas sandstones. Am. Assoc. Pet. Geol. Bull. 98, 663–694 (2014). https://doi.org/10.1306/08011312078

    Article  Google Scholar 

  14. Sun, Y.; Wu, Q.; Wei, M.; Bai, B.; Ma, Y.: Experimental study of friction reducer flows in microfracture. Fuel 131, 28–35 (2014). https://doi.org/10.1016/j.fuel.2014.04.050

    Article  Google Scholar 

  15. Pimienta, L.; Sarout, J.; Esteban, L.; David, C.; Clennell, M.B.: Pressure-dependent elastic and transport properties of porous and permeable rocks: microstructural control. J. Geophys. Res. Solid Earth. 122, 8952–8968 (2017). https://doi.org/10.1002/2017JB014464

    Article  Google Scholar 

  16. Sarout, J.; Cazes, E.; Delle Piane, C.; Arena, A.; Esteban, L.: Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models. J. Geophys. Res. Solid Earth. 122, 6180–6201 (2017). https://doi.org/10.1002/2017JB014147

    Article  Google Scholar 

  17. Brantut, N.; Baker, M.; Hansen, L.N.; Baud, P.: Microstructural control of physical properties during deformation of porous limestone. J. Geophys. Res. Solid Earth. 123, 4751–4764 (2018). https://doi.org/10.1029/2018JB015636

    Article  Google Scholar 

  18. Benaafi, M.; Hariri, M.; Bertotti, G.; Al-Shaibani, A.; Abdullatif, O.; Makkawi, M.: Natural fracture system of the Cambro-Permian Wajid Group, Wadi Al-Dawasir, SW Saudi Arabia. J. Pet. Sci. Eng. 175, 140–158 (2019). https://doi.org/10.1016/j.petrol.2018.12.022

    Article  Google Scholar 

  19. Dvorkin, J.; Alabbad, A.: Velocity-porosity-mineralogy trends in chalk and consolidated carbonate rocks. Geophys. J. Int. 219, 662–671 (2019). https://doi.org/10.1093/gji/ggz304

    Article  Google Scholar 

  20. Zhang, L.; Ba, J.; Fu, L.; Carcione, J.M.; Cao, C.: Estimation of pore microstructure by using the static and dynamic moduli. Int. J. Rock Mech. Min. Sci. 113, 24–30 (2019). https://doi.org/10.1016/j.ijrmms.2018.11.005

    Article  Google Scholar 

  21. Shanley, K.W.; Cluff, R.M.; Robinson, J.W.: Factors controlling prolific gas production from low-permeability sandstone reservoirs: Implications for resource assessment, prospect development, and risk analysis. Am. Assoc. Pet. Geol. Bull. 88, 1083–1121 (2004). https://doi.org/10.1306/03250403051

    Article  Google Scholar 

  22. Byrnes, A.P., Cluff, R.M., Victorine, J., John, W., Stalder, K., Daniel, O., Andrew, K., Owen, M., Troy, H., Joshua, B., Krygowski, D., Whittaker, S.: Analysis of critical permeabilty, capillary pressure and electrical properties for mesaverde tight gas sandstones from western US Basins. (2008). doi:https://doi.org/10.2172/971248

  23. Saleh, A.A.; Castagna, J.P.: Revisiting the Wyllie time avarage equation in the case of near-spherical pores. Geophysics 69, 45–55 (2004). https://doi.org/10.1190/1.1649374

    Article  Google Scholar 

  24. Xu, S.; Payne, M.A.: Modeling elastic properties in carbonate rocks. Lead. Edge (Tulsa, OK) 28, 66–74 (2009). https://doi.org/10.1190/1.3064148

    Article  Google Scholar 

  25. Johari, A.; Emami Niri, M.: Rock physics analysis and modelling using well logs and seismic data for characterising a heterogeneous sandstone reservoir in SW of Iran. Explor. Geophys. (2020). https://doi.org/10.1080/08123985.2020.1836956

    Article  Google Scholar 

  26. Kumar, M., Han, D.H.: Pore shape effect on elastic properties of carbonate rocks. Soc. Explor. Geophys. 75th SEG Int. Expo. Annu. Meet. SEG 2005. (2005). doi:https://doi.org/10.1190/1.2147969

  27. Sayers, C.M.: The elastic properties of carbonates. Lead. Edge (Tulsa, OK) 27, 1020–1024 (2008). https://doi.org/10.1190/1.2967555

    Article  Google Scholar 

  28. Smith, T.; Sondergerld, C.; Ali, O.T.: Microstructural controls on electric and acoustic properties in tight gas sandstones: some emperical data and observations. Lead. Edge. 29, 1470–1474 (2010). https://doi.org/10.1190/1.3525362

    Article  Google Scholar 

  29. Zhao, L.; Nasser, M.; Han, D.H.: Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophys. Prospect. 61, 827–841 (2013). https://doi.org/10.1111/1365-2478.12043

    Article  Google Scholar 

  30. Avseth, P.; Mukerji, T.; Mavko, G.: Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  31. Dvorkin, J.P.; Mavko, G.: Modeling attenuation in reservoir and nonreservoir rock. Lead. Edge (Tulsa, OK) 25, 194–197 (2006). https://doi.org/10.1190/1.2172312

    Article  Google Scholar 

  32. Picotti, S.; Carcione, J.M.; Ba, J.: Rock-physics templates based on seismic. Q. Geophys. (2018). https://doi.org/10.1190/geo2018-0017.1

    Article  Google Scholar 

  33. Tucovic, N.; Gegenhuber, N.: Well-log based rock physics template of the Vienna Basin and the underlying Calcereous Alps. Acta Geophys. 65, 441–451 (2017). https://doi.org/10.1007/s11600-017-0037-6

    Article  Google Scholar 

  34. Li, H.; Zhang, J.: Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates. J. Appl. Geophys. 151, 175–183 (2018). https://doi.org/10.1016/j.jappgeo.2018.02.017

    Article  Google Scholar 

  35. Tan, W.; Ba, J.; Müller, T.; Fang, G.; Zhao, H.: Rock physics model of tight oil siltstone for seismic prediction of brittleness. Geophys. Prospect. 68, 1554–1574 (2020). https://doi.org/10.1111/1365-2478.12938

    Article  Google Scholar 

  36. Pang, M.; Ba, J.; Fu, L.Y.; Carcione, J.M.; Markus, U.I.; Zhang, L.: Estimation of microfracture porosity in deep carbonate reservoirs based on 3D rock-physics templates. Interpretation (2020). https://doi.org/10.1190/INT-2019-0258.1

    Article  Google Scholar 

  37. Berryman, G.: Ellipsoidal inclusions Ac “a.” J. Acoust. Am. 66, 1820 (1980)

    Article  Google Scholar 

  38. Zhang, L.; Ba, J.; Carcione, J.M.; Sun, W.: Modeling wave propagation in cracked porous media with penny-shaped inclusions. Geophysics (2019). https://doi.org/10.1190/geo2018-0487.1

    Article  Google Scholar 

  39. Lu, Z.; Li, Y.; Ye, N.; Zhang, S.; Lu, C.; Li, W.; Cheng, Z.; Ding, X.; Zhu, B.; Huang, B.: Fluid inclusions record hydrocarbon charge history in the Shunbei Area, Tarim Basin. NW China. Geofluids. (2020). https://doi.org/10.1155/2020/8847247

    Article  Google Scholar 

  40. Wang, Q.; Hao, F.; Cao, Z.; Tian, J.; Cong, F.: Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei field, Tarim Basin, China: Implications on alteration and mixing. Mar. Pet. Geol. 123, 104725 (2021). https://doi.org/10.1016/j.marpetgeo.2020.104725

    Article  Google Scholar 

  41. Ni, Z.Y.; Wang, T.G.; Li, M.J.; Chen, Z.H.; Ou, G.X.; Cao, Z.C.: Natural gas characteristics, fluid evolution, and gas charging time of the Ordovician reservoirs in the Shuntuoguole region, Tarim Basin. NW China. Geol. J. 53, 947–959 (2018). https://doi.org/10.1002/gj.2936

    Article  Google Scholar 

  42. Guo, M.Q.; Fu, L.Y.; Ba, J.: Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements. Geophys. J. Int. 178, 447–456 (2009). https://doi.org/10.1111/j.1365-246X.2009.04159.x

    Article  Google Scholar 

  43. David, E.C.; Zimmerman, R.W.: Pore structure model for elastic wave velocities in fluid-saturated sandstones. J. Geophys. Res. Solid Earth. 117, 1–15 (2012). https://doi.org/10.1029/2012JB009195

    Article  Google Scholar 

  44. Mori, T.; Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973). https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  45. Toksoz, M.N.; Johnston, D.H.; Timur, A.: Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics. 44, 681–690 (1979). https://doi.org/10.1190/1.1440970

    Article  Google Scholar 

  46. Voigt, W.: Lehrbuch der kristallphysik (mit ausschluss der kristalloptik). B.G. Teubner, Leipzig; Berlin (1910)

  47. Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM Zeitschrift für Angew. Math. und Mech. 9, 49–58 (1929). doi:https://doi.org/10.1002/zamm.19290090104

  48. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A. 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  49. Berryman, J.G.: Long-wavelength propagation in composite elastic media. J. Acoust. Soc. Am. 68, 1809–1819 (1980). https://doi.org/10.1121/1.385171

    Article  MATH  Google Scholar 

  50. Batzle, M.; Zhijing, W.: Seismic properties of pore fluids. Geophysics 57, 1396–1408 (1992). https://doi.org/10.1190/1.1443207

    Article  Google Scholar 

  51. Ba, J.; Carcione, J.M.; Nie, J.X.: Biot-Rayleigh theory of wave propagation in double-porosity media. J. Geophys. Res. Solid Earth. 116, 6202 (2011). https://doi.org/10.1029/2010JB008185

    Article  Google Scholar 

  52. Pride, S.R.; Berryman, J.G.; Harris, J.M.: Seismic attenuation due to wave-induced flow. J. Geophys. Res. Solid Earth. (2004). https://doi.org/10.1029/2003jb002639

    Article  Google Scholar 

  53. Ba, J.; Xu, W.; Fu, L.-Y.Y.; Carcione, J.M.; Zhang, L.: Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation. J. Geophys. Res. Solid Earth. 122, 1949–1976 (2017). https://doi.org/10.1002/2016JB013882

    Article  Google Scholar 

  54. Carcione, J.M.: Wavefields in real media. Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media. Elsevier, Hoboken (2014)

    Google Scholar 

  55. Ba, J.; Cao, H.; Carcione, J.M.; Tang, G.; Yan, X.F.; Sun, W.T.; Nie, J.X.: Multiscale rock-physics templates for gas detection in carbonate reservoirs. J. Appl. Geophys. 93, 77–82 (2013). https://doi.org/10.1016/j.jappgeo.2013.03.011

    Article  Google Scholar 

  56. Guo, Z.; Li, X.Y.; Liu, C.; Feng, X.; Shen, Y.: A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. J. Geophys. Eng. (2013). https://doi.org/10.1088/1742-2132/10/2/025006

    Article  Google Scholar 

  57. Klimentos, T.: Attenuation of P- and S-waves as a method of distinguishing gas and condensate from oil and water. Geophysics 60, 447–458 (1995). https://doi.org/10.1190/1.1889899

    Article  Google Scholar 

  58. Li, F.; Zhou, H.; Zhao, T.; Marfurt, K.J.: Unconventional reservoir characterization based on spectrally corrected seismic attenuation estimation. J. Seism. Explor. 25, 447–461 (2016)

    Google Scholar 

  59. Pang, M.; Ba, J.; Carcione, J.M.; Picotti, S.; Zhou, J.; Jiang, R.: Estimation of porosity and fluid saturation in carbonates from rock-physics templates based on seismic Q. Geophys. 84, M25–M36 (2019). https://doi.org/10.1190/geo2019-0031.1

    Article  Google Scholar 

  60. Berryman, J.G.: Mixture theories for rock properties. In: Ahrens, T.J. (Ed.) Rock physics and phase relations: a handbook of physical constants, pp. 205–228. American Geophysical Union (AGU), Washington, DC (1995)

    Google Scholar 

  61. Mavko, G.; Mukerji, T.; Dvorkin, J.: The rock physics handbook. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China (grant no. 41974123), the Jiangsu Innovation and Entrepreneurship Plan, and the Jiangsu Province Science Fund for Distinguished Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Appendices

Appendix A: Factors P and Q

Following [20, 43], we have

$$P_{s} = \frac{{(1 - v_{s} )}}{{6(1 - 2v_{s} )}} \times \frac{{4(1 + v_{s} ) + 2\alpha_{{{\text{stiff}}}}^{2} (7 - 2v_{s} ) - \left[ {3(1 + 4v_{s} ) + 12\alpha_{{{\text{stiff}}}}^{2} (2 - v_{s} )} \right]g}}{{2\alpha_{{{\text{stiff}}}}^{2} + (1 - 4\alpha_{{{\text{stiff}}}}^{2} )g + (\alpha_{{{\text{stiff}}}}^{2} - 1)(1 + v_{s} )g^{2} }},$$
(A1)
$$\begin{aligned} Q_{s} = & \frac{{4(\alpha_{{{\text{stiff}}}}^{2} - 1)(1 - v_{s} )}}{{15\left\{ {9(v_{s} - 1) + 2\alpha_{{{\text{stiff}}}}^{2} (3 - 4v_{s} ) + \left[ {(7 - 8v_{s} ) - 4\alpha_{stiff}^{2} (1 - 2v_{s} )} \right]g} \right\}}} \\ & \; \times \left\{ \begin{gathered} \frac{{8(1 - v_{s} ) + 2\alpha_{{{\text{stiff}}}}^{2} (3 + 4v_{s} ) + \left[ {(8v_{s} - 1) - 4\alpha^{2} (5 + 2v_{s} )} \right]g + 6(\alpha_{{{\text{stiff}}}}^{2} - 1)(1 + v_{s} )g^{2} }}{{2\alpha_{{{\text{stiff}}}}^{2} + (1 - 4\alpha_{{{\text{stiff}}}}^{2} )g + (\alpha_{{{\text{stiff}}}}^{2} - 1)(1 + v_{s} )g^{2} }} \hfill \\ - 3\left[ {\frac{{8(v_{s} - 1) + 2\alpha_{{{\text{stiff}}}}^{2} (5 - 4v_{s} ) + \left[ {3(1 - 2v_{s} ) + 6\alpha_{{{\text{stiff}}}}^{2} (v_{s} - 1)} \right]g}}{{ - 2\alpha_{{{\text{stiff}}}}^{2} + \left[ {(2 - v_{s} ) + \alpha_{{{\text{stiff}}}}^{2} (1 + v_{s} )} \right]g}}} \right] \hfill \\ \end{gathered} \right\} \\ \end{aligned}$$
(A2)

where

$$g = \left\{ \begin{gathered} \frac{{\alpha_{{{\text{stiff}}}}^{2} }}{{(1 - \alpha_{{{\text{stiff}}}}^{2} )^{3/2} }}\left( {\arccos \, \alpha_{{{\text{stiff}}}}^{2} - \alpha_{{{\text{stiff}}}}^{2} \sqrt {1 - \alpha_{{{\text{stiff}}}}^{2} } } \right)\;\;(\alpha_{{{\text{stiff}}}}^{2} < 1) \hfill \\ \frac{{\alpha_{{{\text{stiff}}}}^{2} }}{{(1 - \alpha_{{{\text{stiff}}}}^{2} )^{3/2} }}\left( {\alpha_{{{\text{stiff}}}}^{2} \sqrt {1 - \alpha_{{{\text{stiff}}}}^{2} } - \arccos h \, \alpha_{{{\text{stiff}}}}^{2} } \right)\;\;(\alpha_{{{\text{stiff}}}}^{2} > 1) \hfill \\ \end{gathered} \right.$$
(A3)

where \(v_{s} = (3K_{s} - 2\mu_{s} )/(6K_{s} + 2\mu_{s} )\) is the Poisson ratio.

Appendix B: Factors P *i and Q *i

Following [60, 61], we have

$$P^{*i} = \frac{{K_{s} + \frac{3}{4}\mu_{i} }}{{K_{i} + \frac{3}{4}\mu_{i} + \pi \alpha \beta_{s} }}$$
(B1)
$$Q^{*i} = \frac{1}{5}\left[ {1 + \frac{{8\mu_{s} }}{{4\mu_{i} + \pi \alpha \left( {\mu_{s} + 2\beta_{s} } \right)}} + 2\frac{{K_{i} + \frac{2}{3}\left( {\mu_{i} + \mu_{s} } \right)}}{{K_{i} + \frac{4}{3}\mu_{i} + \pi \alpha \beta_{s} }}} \right]$$
(B2)

where \(\beta_{s} = \mu_{s} \frac{{\left( {3K_{s} + \mu_{s} } \right)}}{{\left( {3K_{s} + 4\mu_{s} } \right)}}\).

Appendix C: Wave Propagation Equation of Penny-Shaped Inclusion Model

Following [38], the wave propagation equations based on penny-shaped inclusion are

$$\begin{aligned} 2G\nabla e_{ij} + & \lambda_{c} \nabla e - \alpha_{1} M_{1} \nabla (\xi^{(1)} - \phi_{1} \phi_{2} \varsigma ) - \alpha_{2} M_{2} \nabla (\xi^{(2)} + \phi_{1} \phi_{2} \varsigma ) \\ & = \rho_{0} \ddot{u} + \rho_{f} \ddot{w}_{i}^{(1)} + \rho_{f} \ddot{w}_{i}^{(2)} \\ \end{aligned}$$
(C1)
$$\scriptsize \alpha_{1} M_{1} \nabla e - M_{1} \nabla (\xi^{(1)} - \phi_{1} \phi_{2} \varsigma ) = \rho_{f} \ddot{u} + m_{1} \ddot{w}_{i}^{\left( 1 \right)} + \frac{\eta }{{k_{1} }}\frac{{\phi_{10} }}{{\phi_{1} }}\dot{w}^{(1)}$$
(C2)
$$\alpha_{2} M_{2} \nabla e - M_{2} \nabla (\xi^{(2)} + \phi_{1} \phi_{2} \varsigma ) = \rho_{f} \ddot{u} + m_{2} \ddot{w}_{i}^{\left( 2 \right)} + \frac{\eta }{{k_{1} }}\frac{{\phi_{10} }}{{\phi_{1} }}\dot{w}^{(2)}$$
(C3)
$$\begin{aligned} &\left( {\frac{3}{8} + \frac{{\phi_{20} }}{{2\phi_{10} }}\ln \frac{{L + R_{0} }}{{R_{0} }}} \right)\phi_{1}^{2} \phi_{2} \rho_{f} R_{0}^{2} \ddot{\varsigma }\\&\quad + \left( {\frac{3\eta }{{8\kappa_{2} }} + \frac{\eta }{{2\kappa_{1} }}\ln \frac{{L + R_{0} }}{{R_{0} }}} \right)\phi_{20} \phi_{1}^{2} \phi_{2} R_{0}^{2} \dot{\varsigma } \\ &\quad = \phi_{1} \phi_{2} \left( {\alpha_{1} M_{1} - \alpha_{1} M_{2} } \right)e + \phi_{1} \phi_{2} \left( {M_{2} \xi^{(2)} - M_{1} \xi^{(1)} } \right) \\ &\quad\quad+ \phi_{1}^{2} \phi_{2}^{2} \left( {M_{1} + M_{2} } \right)\varsigma \\ \end{aligned}$$
(C4)

where \(e_{ij} = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}\left( {\delta_{j} u_{i} + \delta_{i} u_{j} } \right)\) are the solid strain components, with i, j = 1, 2, 3, \(e = \nabla \cdot {\mathbf{u}}\), \(\xi^{(1)} = - \nabla \cdot {\mathbf{w}}^{(m)}\) is the fluid content increment (m = 1, 2 refer to the host and penny-shaped inclusions, respectively), and \({\mathbf{w}}^{(m)} = \phi_{m} \left( {{\mathbf{U}}_{m} - {\mathbf{u}}} \right)\), where \({\mathbf{U}} = \left( {U_{1} ,U_{2} ,U_{3} } \right)^{T}\) and \({\mathbf{u}} = \left( {u_{1} ,u_{2} ,u_{3} } \right)^{T}\) are the fluid and solid displacements, respectively, and the dot above a variable denotes a partial time derivative. The variation in fluid flow between the host medium and inclusion is denoted by \(\varsigma\). \(\phi_{10}\) and \(\phi_{20}\) are the local porosities of the two skeletons (stiff pores and cracks), \(\phi_{1} = \phi_{10} v_{1}\) and \(\phi_{2} = \phi_{20} v_{2}\) are the absolute porosities of the two pore types, with \(v_{1}\) and \(v_{2}\) their respective volume ratio which satisfy \(v_{1} + v_{2} = 1\), the total porosity is \(\phi = \phi_{1} + \phi_{2}\), \(\eta\) is the fluid viscosity, \(\kappa_{1}\) and \(\kappa_{2}\) are the host and inclusion permeabilities, respectively, \(\rho_{0}\) and \(\rho_{f}\) are the composite and pore-fluid densities, with \(\rho_{0} = \left( {1 - \phi } \right)\rho_{s} + \phi \rho_{f}\) where \(\rho_{s}\) is the grain density, \(m_{1} = \frac{{\tau_{1} \rho_{f} }}{{\phi_{1} }}\) and \(m_{2} = \frac{{\tau_{2} \rho_{f} }}{{\phi_{2} }}\) with \(\tau_{1} = \frac{1}{2}\left( {1 + \frac{1}{{\phi_{1} }}} \right)\) and \(\tau_{2} = \frac{1}{2}\left( {1 + \frac{1}{{\phi_{2} }}} \right)\) as the host medium and inclusion tortuosities, respectively. \(G = \mu_{{{\text{SC}}}}^{*}\) is the bulk shear modulus of dry rock and the stiffnesses \(\lambda_{c}\), \(\alpha_{1}\), \(\alpha_{2}\), \(M_{1}\) and \(M_{2}\) are given in Appendix D. The characteristic flow length is \(L = \left( {\frac{{R_{0}^{2} }}{12}} \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}}\) and \(R_{0}\) is the inclusion radius.

Appendix D: Stiffness Coefficients

The expressions of the stiffness coefficients are

$$\begin{aligned} \lambda_{c} & = \left( {1 - \phi } \right)K_{s} - \frac{2}{3}G + \left( {2 - \frac{{K_{s} }}{{K_{f} }}} \right)\left( {\phi_{1} \alpha_{1} M_{1} + \phi_{2} \alpha_{2} M_{2} } \right) \\ &\quad- \left( {1 - \frac{{K_{s} }}{{K_{f} }}} \right)\left( {\phi_{1}^{2} M_{1} + \phi_{2}^{2} M_{2} } \right) \end{aligned}$$
(D1)
$$\alpha_{1} = \frac{{\beta \phi_{1} K_{s} }}{{\gamma K_{f} }} + \phi_{1} ,\;\;\;\alpha_{2} = \frac{{\beta \phi_{2} K_{s} }}{{\gamma K_{f} }} + \phi_{2}$$
(D2)
$$M_{1} = \frac{{K_{f} }}{{\left( {\frac{\beta }{\gamma } + 1} \right)\phi_{1} }},\;\;M_{2} = \frac{{K_{f} }}{{\left( {\frac{1}{\gamma } + 1} \right)\phi_{2} }}$$
(D3)
$$\gamma = \frac{{K_{s} }}{{K_{f} }}\left( {\frac{{\beta \phi_{1} + \phi_{2} }}{{1 - \phi - \frac{{K_{b} }}{{K_{s} }}}}} \right)$$
(D4)
$$\beta = \frac{{\phi_{20} }}{{\phi_{10} }}\left[ {\frac{{1 - \left( {1 - \phi_{10} } \right)\frac{{K_{s} }}{{K_{b1} }}}}{{1 - \left( {1 - \phi_{20} } \right)\frac{{K_{s} }}{{K_{b2} }}}}} \right]$$
(D5)

where \(K_{{{\text{SC}}}}^{*}\) = \(K_{b}\) is the bulk modulus of the dry rock, \(K_{i}\) = \(K_{b1}\) and \(K_{b2}\) are the dry-rock moduli of the host medium and inclusions.

Appendix E: Dispersion Equations

Substituting a plane-wave kernel into the differential equations (C1) - (C4), the complex wave number k can be obtained from

$$\left| {\begin{array}{*{20}l} {a_{11} k^{2} + b_{11} } \hfill &\quad {a_{12} k^{2} + b_{12} } \hfill &\quad {a_{13} k^{2} + b_{13} } \hfill \\ {a_{21} k^{2} + b_{21} } \hfill & \quad{a_{22} k^{2} + b_{22} } \hfill &\quad {a_{23} k^{2} + b_{23} } \hfill \\ {a_{31} k^{2} + b_{31} } \hfill &\quad {a_{32} k^{2} + b_{32} } \hfill &\quad {a_{33} k^{2} + b_{33} } \hfill \\ \end{array} } \right| = 0,$$
(E1)

where

$$\begin{array}{*{20}l} {a_{11} = \lambda_{c} + \frac{2}{3}G + \phi_{1} \phi_{2} \left( {\alpha_{1} M_{1} - \alpha_{2} M_{2} } \right)q_{1} ,} \hfill & {b_{11} = - \rho \omega^{2} } \hfill \\ {a_{12} = - \alpha_{1} M_{1} + \phi_{1} \phi_{2} \left( {\alpha_{1} M_{1} - \alpha_{2} M_{2} } \right)q_{2} ,} \hfill & {b_{12} = \rho_{f} \omega^{2} } \hfill \\ {a_{13} = - \alpha_{2} M_{2} + \phi_{1} \phi_{2} \left( {\alpha_{1} M_{1} - \alpha_{2} M_{2} } \right)q_{3} ,} \hfill & {b_{13} = \rho_{f} \omega^{2} } \hfill \\ {a_{21} = - \alpha_{1} M_{1} - \phi_{1} \phi_{2} M_{1} q_{1} ,} \hfill & {b_{21} = b_{12} } \hfill \\ {a_{22} = M_{1} - \phi_{1} \phi_{2} M_{1} q_{2} ,} \hfill & {b_{22} = - M_{1} \omega^{2} + i\omega b_{1} /\phi_{1}^{2} } \hfill \\ {a_{23} = - \phi_{1} \phi_{2} M_{1} q_{3} ,} \hfill & {b_{23} = 0} \hfill \\ {a_{31} = - \alpha_{2} M_{2} - \phi_{1} \phi_{2} M_{2} q_{1} ,} \hfill & {b_{31} = b_{13} } \hfill \\ {a_{32} = \phi_{1} \phi_{2} M_{2} q_{2} ,} \hfill & {b_{32} = 0} \hfill \\ {a_{33} = M_{2} + \phi_{1} \phi_{2} M_{2} q_{3} ,} \hfill & {} \hfill \\ \end{array}$$
(E2)

with

$$\begin{aligned} q_{1} = & \phi_{1} \phi_{2} \left( {\alpha_{1} M_{1} - \alpha_{2} M_{2} } \right)/Z \\ q_{2} = & - \phi_{1} \phi_{2} M_{1} /Z \\ q_{3} = & - \phi_{1} \phi_{2} M_{2} /Z \\ Z = & - \omega^{2} \left( {\frac{3}{8} + \frac{{\phi_{20} }}{{2\phi_{10} }}\ln \frac{{L + R_{0} }}{{R_{0} }}} \right)\phi_{1}^{2} \phi_{2} \rho_{f} R_{0}^{2}\\ & + i\omega \left( {\frac{{3\eta_{2} }}{{8\kappa_{2} }} + \frac{{\eta_{1} }}{{2\kappa_{1} }}\ln \frac{{L + R_{0} }}{{R_{0} }}} \right)\phi_{20} \phi_{1}^{2} \phi_{2} R_{0}^{2} \\ &- \phi_{1}^{2} \phi_{1}^{2} \left( {M_{1} + M_{2} } \right) \\ \end{aligned}$$
(E3)

The complex wave velocity is

$$v = \frac{\omega }{k}$$
(E4)

where k is the complex P-wavenumber. The P-wave phase velocity is

$$V_{p} = \left( {{\text{Re}} \left( \frac{1}{v} \right)} \right)^{ - 1}$$
(E5)

and the quality factor is

$$Q = \frac{{{\text{Re}} (k^{2} )}}{{{\text{Im}} (k^{2} )}}$$
(E6)

with \(\omega = 2\pi f\), where \(f\) is the frequency [54].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markus, U.I., Ba, J., Carcione, J.M. et al. 3-D Rock-Physics Templates for the Seismic Prediction of Pore Microstructure in Ultra-Deep Carbonate Reservoirs. Arab J Sci Eng 47, 7309–7323 (2022). https://doi.org/10.1007/s13369-021-06232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06232-z

Keywords

Navigation