Skip to main content
Log in

Development and Characterization of Epoxy-Based Polymeric Composite with Bio-particulates as Filler Material

  • RESEARCH ARTICLE - SPECIAL ISSUE - Impact of Advanced Tribological Technologies on Modern Industry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The focus of this paper is to develop cheap and unconventional materials for both structural and non-structural applications using eco-friendly bio-wastes. The study used pistachio nutshells (normally disposed of as waste) for fabricating bio-particulate-based polymeric composites. In this investigation, epoxy is taken as matrix material and pistachio nutshells in the form of microparticles are used as filler material. Six different sets of composites with varying filler content up to a maximum of 30 wt% are fabricated by a hand lay-up method. The excellent compatibility and bonding between the matrix and filler material under investigation are confirmed by micrograph obtained from scanning electron microscopy and by Fourier-transform infrared spectroscopy analysis. Physical and mechanical properties are evaluated experimentally as per ASTM. Apart from that, a linear viscoelastic semi-solid model is reported here to understand the mechanical dynamic behaviour of the developed material. On the basis of several test result, the developed composite may find its potential application in light-duty structures efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. German, R.M.: Particulate Composites Fundamental and Applications. Springer, Cham (2016)

    Google Scholar 

  2. Brinson, H.F.; Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, Boston (2008)

    Book  Google Scholar 

  3. Gon, D.; Das, K.; Paul, P.; Maity, S.: Jute composites as wood substitute. Int. J. Text. Sci. 1(6), 84–93 (2012)

    Article  Google Scholar 

  4. Babu, S.R.; Karthikeyan, S.; Senthilkumar, P.; Koodalingam, B.: Mechanical behavior on tamarind & dates seeds powder, prawn shells powder with Arundo donax L. Leaf reinforced epoxy composite. Mater. Today: Proc. 33, 3031–3036 (2020). https://doi.org/10.1016/j.matpr.2020.03.192

    Article  Google Scholar 

  5. Jeyapragash, R.; Srinivasan, V.; Sathiyamurthy, S.: Mechanical properties of natural fiber/particulate reinforced epoxy composites—a review of the literature. Mater. Today: Proc. 22, 1223–1227 (2020)

    Google Scholar 

  6. Surata, W.; Nindhia, T.G.T.; Yolanda, W.E.: Grain size effect on tensile and flexural strength of particulate composites reinforced with Acropora waste. Mater. Today: Proc. 22, 156–161 (2020)

    Google Scholar 

  7. Dong, C.D.; Lan, J.; Fornari, C.C.M., Jr.; Scaffro, R.: Mechanical property of macadamia nutshell powder and PLA bio composites. Aust. J. Mech. Eng. 15, 150–156 (2017)

    Article  Google Scholar 

  8. Tamta, K.: Fabrication and analysis of almond shell based composite material, International Conference on Advance Research and Innovations in Mechanical, Material Science, Industrial Engineering and Management, Paper ID: mmiem-01, pp. 1–5 (2014)

  9. Fiorelli, J.; Curtolo, D.D.; Barrero, N.G.; Savastano, H., Jr.; Pallone, E.M.D.J.A.; Johnson, R.: Particulate composite based on coconut fiber and castor oil polyurethane adhesive: an eco-efficient product. Ind. Crops Prod. 40, 69–75 (2012)

    Article  Google Scholar 

  10. Agunsoye, J.O.; Isaac, T.S.; Samuel, S.O.: Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. J. Miner. Mater. Charact. Eng. 11, 774–779 (2012)

    Google Scholar 

  11. Bhaskar, J.; Singh, V.K.: Water absorption and compressive properties of coconut shell particle reinforced-epoxy composite. J. Mater. Environ. Sci. 4(1), 113–118 (2013)

    Google Scholar 

  12. Somashekhar, T.M.; Naik, P.; Nayak, V.; Rahul, S.: Study of mechanical properties of coconut shell powder and tamarind shell powder reinforced with epoxy composites. IOP Conf. Series: Mater. Sci. Eng. 376(1), 012105 (2018). https://doi.org/10.1088/1757-899X/376/1/012105

    Article  Google Scholar 

  13. Nitin, S.; Singh, V.K.: Mechanical behaviour of walnut reinforced composites. J. Mater. Environ. Sci. 4(2), 233–238 (2013)

    Google Scholar 

  14. Lala, S.D.; Deoghare, A.B.; Chatterjee, A.: Mechanical and Morphological characterization of Walnut Shell reinforced epoxy composite. IOP Conf. Series: Mater. Sci. Eng. 377, 012011 (2018). https://doi.org/10.1088/1757-899X/377/1/012011

    Article  Google Scholar 

  15. Mishra, V.; Srivastava, A.: Wood apple shell particulate composites with improved mechanical property. Int. J. Eng. Res. Appl. 4(8), 142–145 (2014)

    Google Scholar 

  16. Kolawole, S.A.; Dauda, B.M.; Ishiaku, U.S.: Physico-mechanical properties of dates palm (phoenix dactylifera) pits reinforced unsaturated polyester composites. Int. J. Sci. Res. 4, 1412–1418 (2014)

    Google Scholar 

  17. Ibrahem, R.A.: Effect of date palm seeds on the tribological behaviour of polyester composites under different testing conditions. J. Mater. Sci. Eng. (2015). https://doi.org/10.4172/2169-0022.1000206

    Article  Google Scholar 

  18. Masmoul, M.; Abdolvahab, E.: An investigation on nano clay particles and pistachio shell flour effect on mechanical and physical property of wood plastic composites. Int J Biol, Pharm, Allied Sci 4(5), 129–143 (2015)

    Google Scholar 

  19. Abdolvahab, E.; Lashgari, A.; Farsi, M.; Nourbakhsh, A.: A Study on the effect of nano clay particles and pistachio shell flour on the mechanical properties of wood-plastic composites. World Sci. J. 2(3), 1–11 (2014)

    Google Scholar 

  20. Taghizadeh, A.; Rad-Moghadam, K.: Green fabrication of Cu/pistachio shell nanocomposite using Pistacia Vera L. hull: An efficient catalyst for expedient reduction of 4-nitrophenol and organic dyes. J. Clean. Prod. 198, 1105–1119 (2018)

    Article  Google Scholar 

  21. Ghazanfari, A.; Panigrahi, S.; Tabil L. Jr.: Experiments on production of bio-composite plates from pistachio shells, date pits and HDPE. Paper presented at Canadian Society for engineering in Agricultural, Food, and Biological System, (2005), pp. 05–079.

  22. Karaagac, B.: Use of ground pistachio shell as alternative filler in natural rubber/styrene–butadiene rubber-based rubber compounds. Soc. Plast. Eng. 35, 245–252 (2014)

    Google Scholar 

  23. Nayak, S.Y.; Heckadka, S.S.; Kini, U.A.; Thomas, L.G.; Gupta, I.: Pistachio shell flakes and flax fibres as reinforcements in polyester based composites. In: International Conference on Engineering and Information Technology, pp. 17–24 (2017)

  24. Ozsin, G.: Production and characterization of activated carbon from pistachio-nut shell, MS Thesis, Middle East Technical University, Turkey, (2011).

  25. Agrawal, A.; Chandraker, S.: Influence of particulate surface treatment on physical, mechanical, thermal, and dielectric behavior of epoxy/hexagonal boron nitride composites. Polym. Compos. 41(4), 1574–1583 (2020)

    Article  Google Scholar 

  26. Fernandes, I.J.; Santos, R.V.; Santo, E.C.A.; Rocha, T.L.A.C.; Domingues, N.S., Jr.; Moraes, C.A.M.: Replacement of commercial silica by rice husk ash in epoxy composites: a comparative analysis. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-MR-2016-0562

    Article  Google Scholar 

  27. Movva, M.; Kommineni, R.: Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites. Mater. Res. Expr. 4, 04514 (2017). https://doi.org/10.1088/2053-1591/aa6863

    Article  Google Scholar 

  28. Sutivisedsak, N.; Cheng, H.N.; Burks, C.S.; Johnson, J.A.; Siegel, J.P.; Civerolo, E.L.; Biswas, A.: Use of nutshells as fillers in polymer composites, journal of polymer. Environment 20, 305–314 (2012)

    Google Scholar 

  29. Bland, D.R.: The Theory of Linear Viscoelasticity, p. 1–10. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  30. Dutt, J.K.; Roy, H.: Viscoelastic Modelling of Rotor-Shaft Systems using an operator-based approach. J. Mech. Sci., IMechE, Part-C 225, 73–87 (2011)

    Article  Google Scholar 

  31. Roy, H.; Chandraker, S.; Dutt, J.K.; Roy, T.: Dynamics of multilayer, multidisc viscoelastic rotor—an operator based higher order classical model. J. Sound Vib. 369, 87–108 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of the Department of Science and Technology (DST), Government of India, for project grant titled “Design and development of polymer composite for microelectronic applications” ECR/2017/000540. We also acknowledge DST-SERB-ECR for providing Project Grant titled “Design and fabrication of helicopter tail rotor shaft system using carbon fibre reinforced composite” through ECR/2018/001577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chandraker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandraker, S., Dutt, J.K., Agrawal, A. et al. Development and Characterization of Epoxy-Based Polymeric Composite with Bio-particulates as Filler Material. Arab J Sci Eng 47, 8069–8080 (2022). https://doi.org/10.1007/s13369-021-06221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06221-2

Keywords

Navigation