Skip to main content
Log in

The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Global optimization solves real-world problems numerically or analytically by minimizing their objective functions. Most of the analytical algorithms are greedy and computationally intractable (Gonzalez in Handbook of approximation algorithms and metaheuristics: contemporary and emerging applications, vol. 2. CRC Press, Boca Raton, 2018). Metaheuristics are generally nature-inspired optimization algorithms. They numerically find a near-optimal solution for optimization problems in a reasonable amount of time. We propose a novel metaheuristic algorithm for global optimization. It is based on the shooting and jumping behaviors of the archerfish for hunting aerial insects. We name our proposed algorithm the archerfish hunting optimizer (AHO). The AHO algorithm has two parameters (the swapping angle and the attractiveness rate) to set. We execute the AHO algorithm using five different values for each parameter. In all, we perform 25 simulations for four distinct values of the search space dimension (i.e., 5, 10, 15, and 20). We run the Friedman test to determine the best values of parameters for each dimension. We perform three different comparisons to validate the proposed algorithm’s performance. First, AHO is compared to 12 recent metaheuristic algorithms (the accepted algorithms for the 2020’s competition on single-objective bound-constrained numerical optimization) on ten test functions of the benchmark CEC 2020 for unconstrained optimization. The experimental results are evaluated using the Wilcoxon signed-rank test. Experimental outcomes show that the AHO algorithm, in terms of robustness, convergence, and quality of the obtained solution, is significantly competitive compared to state-of-the-art methods. Second, the performance of AHO and three recent metaheuristic algorithms is evaluated using five engineering design problems taken from the benchmark CEC 2020 for non-convex constrained optimization. The obtained results are ranked using the ranking scheme detailed in the corresponding paper, and the obtained ranks illustrate that AHO is very competitive when opposed to the considered algorithms. Finally, the performance of AHO in solving five engineering design problems is assessed and compared to several well-established state-of-the-art algorithms. We analyzed the obtained numerical results in detail. These results show that the AHO algorithm is significantly better than, or at least comparable to the considered algorithms with very efficient performance in solving many optimization problems. The statistical indicators illustrate that the AHO algorithm has a high ability to significantly outperform the well-established optimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbass, H.A.: Mbo: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1, pp. 207–214. IEEE (2001)

  2. Agarwal, P.K.; Procopiuc, C.M.: Exact and approximation algorithms for clustering. Algorithmica 33(2), 201–226 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Alatas, B.: Acroa: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011)

    Google Scholar 

  4. Artin, E.: The Gamma Function. Courier Dover Publications (2015)

  5. Askarzadeh, A.; Rezazadeh, A.: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int. J. Energy Res. 37(10), 1196–1204 (2013)

    Google Scholar 

  6. Atashpaz-Gargari, E.; Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, pp. 4661–4667. IEEE (2007)

  7. Becerra, R.L.; Coello, C.A.C.: Cultured differential evolution for constrained optimization. Comput. Methods Appl. Mech. Eng. 195(33–36), 4303–4322 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Beheshti, Z.; Shamsuddin, S.M.H.: A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl. 5(1), 1–35 (2013)

    Google Scholar 

  9. Bergmann, H.W.: Optimization: methods and applications, possibilities and limitations. In: Proceedings of an International Seminar Organized by Deutsche Forschungsanstalt Für Luft-und Raumfahrt (DLR), Bonn, June 1989, vol. 47. Springer Science & Business Media (2012)

  10. Biswas, P.P.; Suganthan, P.N.: Large initial population and neighborhood search incorporated in lshade to solve cec2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020)

  11. Bolufé-Röhler, A.; Chen, S.: A multi-population exploration-only exploitation-only hybrid on CEC-2020 single objective bound constrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

  12. BoussaïD, I.; Lepagnot, J.; Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Brest, J.; Maučec, M.S.; Bošković, B.: Differential evolution algorithm for single objective bound-constrained optimization: Algorithm j2020. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

  14. Bujok, P.; Kolenovsky, P.; Janisch, V.: Eigenvector crossover in jde100 algorithm. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE (2020)

  15. Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Coello, C.A.C.; Montes, E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–203 (2002)

    Google Scholar 

  17. Coello Coello, C.A.; Becerra, R.L.: Efficient evolutionary optimization through the use of a cultural algorithm. Eng. Optim. 36(2), 219–236 (2004)

    Google Scholar 

  18. Cramér, H.: Random Variables and Probability Distributions, vol. 36. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Cuevas, E.; Fausto, F.; González, A.: The selfish herd optimizer. In: New Advancements in Swarm Algorithms: Operators and Applications, pp. 69–109. Springer (2020)

  20. Dai, C.; Chen, W.; Zhu, Y.; Zhang, X.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009)

    Google Scholar 

  21. De Melo, V.V.; Carosio, G.L.: Investigating multi-view differential evolution for solving constrained engineering design problems. Expert Syst. Appl. 40(9), 3370–3377 (2013)

    Google Scholar 

  22. De Melo, V.V.; Iacca, G.: A modified covariance matrix adaptation evolution strategy with adaptive penalty function and restart for constrained optimization. Expert Syst. Appl. 41(16), 7077–7094 (2014)

    Google Scholar 

  23. Dhiman, G.; Kumar, V.: Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 165, 169–196 (2019)

    Google Scholar 

  24. Dill, L.M.: Refraction and the spitting behavior of the archerfish (toxotes chatareus). Behav. Ecol. Sociobiol. 2(2), 169–184 (1977)

    Google Scholar 

  25. Doğan, B.; Ölmez, T.: A new metaheuristic for numerical function optimization: vortex search algorithm. Inf. Sci. 293, 125–145 (2015)

    Google Scholar 

  26. Dorigo, M.; Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477. IEEE (1999)

  27. Dréo, J.; Pétrowski, A.; Siarry, P.; Taillard, E.: Metaheuristics for hard optimization: methods and case studies. Springer (2006)

  28. Du, H.; Wu, X.; Zhuang, J.: Small-world optimization algorithm for function optimization. In: International Conference on Natural Computation, pp. 264–273. Springer (2006)

  29. dos Santos Coelho, L.: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 37(2), 1676–1683 (2010)

    Google Scholar 

  30. Eita, M.; Fahmy, M.: Group counseling optimization. Appl. Soft Comput. 22, 585–604 (2014)

    Google Scholar 

  31. Erol, O.K.; Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Google Scholar 

  32. Etemadi, N.: An elementary proof of the strong law of large numbers. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 55(1), 119–122 (1981)

    MathSciNet  MATH  Google Scholar 

  33. Ezugwu, A.E.; Olusanya, M.O.; Govender, P.: Mathematical model formulation and hybrid metaheuristic optimization approach for near-optimal blood assignment in a blood bank system. Expert Syst. Appl. 137, 74–99 (2019)

    Google Scholar 

  34. Fan, Z.; Fang, Y.; Li, W.; Yuan, Y.; Wang, Z.; Bian, X.: Lshade44 with an improved \(\epsilon \) constraint-handling method for solving constrained single-objective optimization problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

  35. Fogel, D.B.: Artificial Intelligence Through Simulated Evolution. Wiley-IEEE Press, Hoboken (1998)

    MATH  Google Scholar 

  36. Fogel, D.B.: Evolutionary Computation: The Fossil Record. Wiley-IEEE Press, Hoboken (1998)

    MATH  Google Scholar 

  37. Fogel, L.J.; Owens, A.J.; Walsh, M.J.: Artificial intelligence through simulated evolution (1966)

  38. Formato, R.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 77, 425–491 (2007)

    Google Scholar 

  39. Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans. 53(4), 1168–1183 (2014)

    Google Scholar 

  40. Gandomi, A.H.; Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Gavin, H.P.; Scruggs, J.T.: Constrained optimization using lagrange multipliers. CEE 201L. Duke University (2012)

  42. Geem, Z.W.; Kim, J.H.; Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Google Scholar 

  43. Ghorbani, N.; Babaei, E.: Exchange market algorithm. Appl. Soft Comput. 19, 177–187 (2014)

    Google Scholar 

  44. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    MathSciNet  MATH  Google Scholar 

  45. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)

    Google Scholar 

  46. Gonzalez, T.F.: Handbook of Approximation Algorithms and Metaheuristics: Contemporary and Emerging Applications, vol. 2. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  47. Grossman, T.; Wool, A.: Computational experience with approximation algorithms for the set covering problem. Eur. J. Oper. Res. 101(1), 81–92 (1997)

    MATH  Google Scholar 

  48. Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New Evolutionary Computation, pp. 75–102. Springer (2006)

  49. Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)

    MathSciNet  Google Scholar 

  50. He, Q.; Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)

    Google Scholar 

  51. He, Q.; Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math. Comput. 186(2), 1407–1422 (2007)

    MathSciNet  MATH  Google Scholar 

  52. He, S.; Wu, Q.; Saunders, J.: A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1272–1278. IEEE (2006)

  53. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Google Scholar 

  54. Hellwig, M.; Beyer, H.G.: A matrix adaptation evolution strategy for constrained real-parameter optimization. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

  55. Ho, Y.C.; Pepyne, D.L.: Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 115(3), 549–570 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Hochba, D.S.: Approximation algorithms for NP-hard problems. ACM SIGACT News 28(2), 40–52 (1997)

    Google Scholar 

  57. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Google Scholar 

  58. Huang, F.Z.; Wang, L.; He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Naseem, R.: Common benchmark functions for metaheuristic evaluation: a review. JOIV Int. J. Inf. Vis. 1(4–2), 218–223 (2017)

    Google Scholar 

  60. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y.: On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31(11), 7665–7683 (2019)

    Google Scholar 

  61. James, J.; Li, V.O.: A social spider algorithm for global optimization. Appl. Soft Comput. 30, 614–627 (2015)

    Google Scholar 

  62. Jou, Y.C.; Wang, S.Y.; Yeh, J.F.; Chiang, T.C.: Multi-population modified l-shade for single objective bound constrained optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

  63. Kadavy, T.; Pluhacek, M.; Viktorin, A.; Senkerik, R.: Soma-cl for competition on single objective bound constrained numerical optimization benchmark: a competition entry on single objective bound constrained numerical optimization at the genetic and evolutionary computation conference (GECCO) 2020. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 9–10 (2020)

  64. Karaboga, D.; Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: International Fuzzy Systems Association World Congress, pp. 789–798. Springer (2007)

  65. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    MathSciNet  MATH  Google Scholar 

  66. Kashan, A.H.: League championship algorithm: a new algorithm for numerical function optimization. In: 2009 International Conference of Soft Computing and Pattern Recognition, pp. 43–48. IEEE (2009)

  67. Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G.: Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)

    Google Scholar 

  68. Kaveh, A.; Farhoudi, N.: A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

    Google Scholar 

  69. Kaveh, A.; Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–294 (2012)

    Google Scholar 

  70. Kaveh, A.; Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Google Scholar 

  71. Kaveh, A.; Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)

    MATH  Google Scholar 

  72. Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

  73. Kennedy, J., et al.: Encyclopedia of machine learning. Particle Swarm Optimization pp. 760–766 (2010)

  74. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    MathSciNet  MATH  Google Scholar 

  75. Koza, J.R.; Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  76. Kumar, A.; Misra, R.K.; Singh, D.; Mishra, S.; Das, S.: The spherical search algorithm for bound-constrained global optimization problems. Appl. Soft Comput. 85, 105734 (2019)

    Google Scholar 

  77. Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm and Evolutionary Computation p. 100693 (2020)

  78. Labbi, Y.; Attous, D.B.; Gabbar, H.A.; Mahdad, B.; Zidan, A.: A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016)

    Google Scholar 

  79. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. (2020)

  80. Li, X.: A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China (2003)

  81. Liu, H.; Cai, Z.; Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)

    Google Scholar 

  82. Lu, X.; Zhou, Y.: A novel global convergence algorithm: bee collecting pollen algorithm. In: International Conference on Intelligent Computing, pp. 518–525. Springer (2008)

  83. Lüling, K.: The archer fish. Sci. Am. 209(1), 100–109 (1963)

    Google Scholar 

  84. Mezura-Montes, E.; Coello, C.A.C.: Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Mexican International Conference on Artificial Intelligence, pp. 652–662. Springer (2005)

  85. Mezura-Montes, E.; Velázquez-Reyes, J.; Coello, C.C.: Modified differential evolution for constrained optimization. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 25–32. IEEE (2006)

  86. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Google Scholar 

  87. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Google Scholar 

  88. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    MathSciNet  Google Scholar 

  89. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Google Scholar 

  90. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  91. Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  92. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)

    Google Scholar 

  93. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  94. Moghaddam, F.F.; Moghaddam, R.F.; Cheriet, M.: Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:1208.2214 (2012)

  95. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.: Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern, 1–29 (2019)

  96. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Awad, N.H.: Evaluating the performance of adaptive gaining-sharing knowledge based algorithm on CEC 2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

  97. Mohamed, A.W.; Sabry, H.Z.: Constrained optimization based on modified differential evolution algorithm. Inf. Sci. 194, 171–208 (2012)

    Google Scholar 

  98. Mohammadi, A.; Zahiri, S.H.: Iir model identification using a modified inclined planes system optimization algorithm. Artif. Intell. Rev. 48(2), 237–259 (2017)

    Google Scholar 

  99. Mohammadi-Esfahrood, S.; Mohammadi, A.; Zahiri, S.H.: A simplified and efficient version of inclined planes system optimization algorithm. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), pp. 504–509. IEEE

  100. Moosavian, N.; Roodsari, B.K.: Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol. Comput. 17, 14–24 (2014)

    Google Scholar 

  101. Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A.: A better balance in metaheuristic algorithms: Does it exist? Swarm Evolut. Comput. p. 100671 (2020)

  102. Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report 826, 1989 (1989)

  103. Mozaffari, M.H.; Abdy, H.; Zahiri, S.H.: IPO: an inclined planes system optimization algorithm. Comput. Inf. 35(1), 222–240 (2016)

    MathSciNet  MATH  Google Scholar 

  104. Mucherino, A.; Seref, O.: Monkey search: a novel metaheuristic search for global optimization. In: AIP Conference Proceedings, vol. 953, pp. 162–173. AIP (2007)

  105. Oftadeh, R.; Mahjoob, M.; Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search. Comput. Math. Appl. 60(7), 2087–2098 (2010)

    MATH  Google Scholar 

  106. Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst. 26, 69–74 (2012)

    Google Scholar 

  107. Parsopoulos, K.E.; Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. In: International Conference on Natural Computation. Springer, pp. 582–591 (2005)

  108. Ramezani, F.; Lotfi, S.: Social-based algorithm (SBA). Appl. Soft Comput. 13(5), 2837–2856 (2013)

    Google Scholar 

  109. Rao, R.V.; Savsani, V.J.; Vakharia, D.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Google Scholar 

  110. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    MATH  Google Scholar 

  111. Ray, T.; Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. Evol. Comput. 7(4), 386–396 (2003)

    Google Scholar 

  112. Rey, D.; Neuhäuser, M.: Wilcoxon-signed-rank test. In: International Encyclopedia of Statistical Science, pp. 1658–1659. Springer, Berlin (2011)

  113. Rossel, S.; Corlija, J.; Schuster, S.: Predicting three-dimensional target motion: how archer fish determine where to catch their dislodged prey. J. Exp. Biol. 205(21), 3321–3326 (2002)

    Google Scholar 

  114. Roth, M.: Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc networks (2005)

  115. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Google Scholar 

  116. Salgotra, R.; Singh, U.; Saha, S.; Gandomi, A.H.: Improving cuckoo search: incorporating changes for CEC 2017 and CEC 2020 benchmark problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020)

  117. Salih, S.Q.; Alsewari, A.A.: A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer. Neural Comput. Appl. 32(14), 10359–10386 (2020)

    Google Scholar 

  118. Sallam, K.M.; Elsayed, S.M.; Chakrabortty, R.K.; Ryan, M.J.: Improved multi-operator differential evolution algorithm for solving unconstrained problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

  119. Salleh, M.N.M.; Hussain, K.; Cheng, S.; Shi, Y.; Muhammad, A.; Ullah, G.; Naseem, R.: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: An empirical analysis. In: International Conference on Soft Computing and Data Mining, pp. 24–32. Springer (2018)

  120. Saremi, S.; Mirjalili, S.; Lewis, A.: Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Google Scholar 

  121. Schuster, S.; Rossel, S.; Schmidtmann, A.; Jäger, I.; Poralla, J.: Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Curr. Biol. 14(17), 1565–1568 (2004)

    Google Scholar 

  122. Schuster, S.; Wöhl, S.; Griebsch, M.; Klostermeier, I.: Animal cognition: how archer fish learn to down rapidly moving targets. Curr. Biol. 16(4), 378–383 (2006)

    Google Scholar 

  123. Shah-Hosseini, H.: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6(1–2), 132–140 (2011)

    Google Scholar 

  124. Shih, A.M.; Mendelson, L.; Techet, A.H.: Archer fish jumping prey capture: kinematics and hydrodynamics. J. Exp. Biol. 220(8), 1411–1422 (2017)

    Google Scholar 

  125. Shiqin, Y.; Jianjun, J.; Guangxing, Y.: A dolphin partner optimization. In: 2009 WRI Global Congress on Intelligent Systems, vol. 1, pp. 124–128. IEEE (2009)

  126. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Google Scholar 

  127. Song, S.; Wang, P.; Heidari, A.A.; Wang, M.; Zhao, X.; Chen, H.; He, W.; Xu, S.: Dimension decided Harris Hawks optimization with gaussian mutation: balance analysis and diversity patterns. Knowl. Based Syst. 215, 106425 (2021)

    Google Scholar 

  128. Stanovov, V., Akhmedova, S., Semenkin, E.: Ranked archive differential evolution with selective pressure for CEC 2020 numerical optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. IEEE (2020)

  129. Storn, R.; Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    MathSciNet  MATH  Google Scholar 

  130. Tables of probability distributions. In: R.H. RIFFENBURGH (ed.) Statistics in Medicine (Second Edition), pp. 586 – 601. Academic Press, Burlington (2006). https://doi.org/10.1016/B978-012088770-5/50069-1

  131. Talbi, H.; Draa, A.: A new real-coded quantum-inspired evolutionary algorithm for continuous optimization. Appl. Soft Comput. 61, 765–791 (2017)

    Google Scholar 

  132. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: International Conference in Swarm Intelligence, pp. 355–364. Springer (2010)

  133. Tilahun, S.L.; Ong, H.C.: Prey-predator algorithm: a new metaheuristic algorithm for optimization problems. Int. J. Inf. Technol. Decis. Mak. 14(06), 1331–1352 (2015)

    Google Scholar 

  134. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    MathSciNet  MATH  Google Scholar 

  135. Trivedi, A.; Srinivasan, D.; Biswas, N.: An improved unified differential evolution algorithm for constrained optimization problems. In: Proceedings of 2018 IEEE Congress on Evolutionary Computation, pp. 1–10. IEEE (2018)

  136. Vailati, A.; Zinnato, L.; Cerbino, R.: How archer fish achieve a powerful impact: hydrodynamic instability of a pulsed jet in toxotes jaculatrix. PLoS ONE 7(10), e47867 (2012)

  137. Van Laarhoven, P.J.; Aarts, E.H.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15. Springer (1987)

  138. Vazirani, V.V.: Approximation Algorithms. Springer (2013)

  139. Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A.: Dish-xx solving CEC2020 single objective bound constrained numerical optimization benchmark. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

  140. Wang, G.G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 10(2), 151–164 (2018)

    Google Scholar 

  141. Wang, G.G.; Deb, S.; Coelho, L.D.S.: Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), pp. 1–5. IEEE (2015)

  142. Wang, G.G.; Deb, S.; Coelho, L.D.S.: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int. J. Bio-Inspired Comput. 12(1), 1–22 (2018)

    Google Scholar 

  143. Wang, G.G.; Deb, S.; Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1995–2014 (2019)

    Google Scholar 

  144. Wang, L.; Li, L.P.: An effective differential evolution with level comparison for constrained engineering design. Struct. Multidiscip. Optim. 41(6), 947–963 (2010)

  145. Wang, Y.; Cai, Z.; Zhou, Y.; Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct. Multidiscip. Optim. 37(4), 395–413 (2009)

    Google Scholar 

  146. Webster, B.; Philip, J.; Bernhard, A.: Local search optimization algorithm based on natural principles of gravitation, IKE’03, Las Vegas, Nevada, USA, June 2003 (2003)

  147. Wheelon, A.D.: Free flight of a ballistic missile. ARS J. 29(12), 915–926 (1959)

    Google Scholar 

  148. Xu, J.; Zhang, J.: Exploration-exploitation tradeoffs in metaheuristics: survey and analysis. In: Proceedings of the 33rd Chinese Control Conference, pp. 8633–8638. IEEE (2014)

  149. Yang, X.S.: Firefly algorithm, levy flights and global optimization. In: Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer (2010)

  150. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer (2010)

  151. Yang, X.S.; Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

  152. Yang, X.S.; Deb, S.; Fong, S.: Metaheuristic algorithms: optimal balance of intensification and diversification. Appl. Math. Inf. Sci. 8(3), 977 (2014)

    Google Scholar 

  153. Yue, C.; Price, K.; Suganthan, P.; Liang, J.; Ali, M.; Qu, B.; Awad, N.; Biswas, P.: Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization. Comput. Intell. Lab., Zhengzhou Univ., Zhengzhou, China, Tech. Rep 201911 (2019)

  154. Zahara, E.; Kao, Y.T.: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 36(2), 3880–3886 (2009)

    Google Scholar 

  155. Zhang, M.; Luo, W.; Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 178(15), 3043–3074 (2008)

    Google Scholar 

  156. Zimmerman, D.W.; Zumbo, B.D.: Relative power of the wilcoxon test, the friedman test, and repeated-measures Anova on ranks. J. Exp. Educ. 62(1), 75–86 (1993)

    Google Scholar 

  157. Zitouni, F.; Harous, S.; Maamri, R.: The solar system algorithm: a novel metaheuristic method for global optimization. IEEE Access 9, 4542–4565 (2021). https://doi.org/10.1109/ACCESS.2020.3047912.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the constructive comments of anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Harous.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitouni, F., Harous, S., Belkeram, A. et al. The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization. Arab J Sci Eng 47, 2513–2553 (2022). https://doi.org/10.1007/s13369-021-06208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06208-z

Keywords

Navigation