Skip to main content
Log in

Deep Learning Reservoir Porosity Prediction Using Integrated Neural Network

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Reservoir porosity is a crucial factor in reservoir characterization. As the availability of cores is limited, porosity needs to be predicted from indirect measurements like well logs. However, porosity prediction is a challenging task due to the spatial interdependence between sediments and the spatial coupling between the well logs data. Therefore, in the present study, to fully mine the effective information contained in log data and improve the accuracy of porosity prediction, we developed a novel deep learning method based on the one-dimensional convolutional neural network and bidirectional gated recurrent unit neural network. This new method, called an integrated neural network, was conceived to perform the porosity prediction task. The convolutional neural network was constructed for learning local correlations and extracting hierarchical correlations, while the bidirectional gated recurrent unit neural network was adopted to learn the variation trends and context information with depth from the learned local features. The designed integrated networks, combinations of the convolutional neural network and the bidirectional gated recurrent unit neural network, could exploit the strengths of both networks and overcome the limitations of each. Using this approach, porosity can be predicted from series of input log data fully considering the correlation of different log series and porosity, the variation trend, and context information with depth. The experimental results on the actual reservoir dataset revealed that, compared with bidirectional gated recurrent unit neural network, the integrated neural network’s average RMSE and MAE decreased by 10.81% and 9.85%, respectively. The results demonstrate the effectiveness of the new method in porosity prediction when only logging data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

modified from Reference [66])

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and Materials

Data associated with this research are available and can be obtained by contacting the corresponding author.

References

  1. Sick, B.; Guggenmos, M.; Joswig, M.: Chances and limits of single-station seismic event clustering by unsupervised pattern recognition. Geophys. J. Int. 201, 1801–1813 (2015). https://doi.org/10.1093/gji/ggv126

    Article  Google Scholar 

  2. Chen, W.; Yang, L.; Zha, B.; Zhang, M.; Chen, Y.: Deep learning reservoir porosity prediction based on multilayer long short-term memory network. Geophysics. 85(4), 1JA-Z18 (2020)

    Article  Google Scholar 

  3. Glover, P.W.J.; Luo, M.: The porosity and permeability of binary grain mixtures. Transp. Porous Media 132(1), 1–37 (2020). https://doi.org/10.1007/s11242-020-01378-0

    Article  MathSciNet  Google Scholar 

  4. Luo, M.; Glover, P.W.J.; Zhao, P.; Li, D.: 3D digital rock modeling of the fractal properties of pore structures. Mar. Pet. Geol. 122, 104706 (2020). https://doi.org/10.1016/j.marpetgeo.2020.104706

    Article  Google Scholar 

  5. Gu, Y.; Bao, Z.; Cui, G.: Permeability prediction using hybrid techniques of continuous restricted Boltzmann machine, particle swarm optimization and support vector regression. J. Nat. Gas Sci. Eng. 59, 97–115 (2018). https://doi.org/10.1016/j.jngse.2018.08.020

    Article  Google Scholar 

  6. Zhong, Z.; Carr, T.R.; Wu, X.; Wang, G.: Application of a convolutional neural network in permeability prediction: a case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics 84, B363–B373 (2019). https://doi.org/10.1190/geo2018-0588.1

    Article  Google Scholar 

  7. Song, H.; Chen, W.; Zhang, H.; Wang, Y.; Xue, Y.: Sandstone porosity prediction based on gated recurrent units. J. Seism. Explor. 29, 371–388 (2020)

    Google Scholar 

  8. Nuha, H.H.; Balghonaim, A.; Liu, B.; Mohandes, M.; Deriche, M.; Fekri, F.: Deep neural networks with extreme learning machine for seismic data compression. Arab J Sci Eng. 45, 1367–1377 (2020). https://doi.org/10.1007/s13369-019-03942-3

    Article  Google Scholar 

  9. Maiti, S.; Krishna Tiwari, R.; Kümpel, H.-J.: Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys. J. Int. 169(2), 733–746 (2007)

    Article  Google Scholar 

  10. Al Khalifah, H.; Glover, P.W.J.; Lorinczi, P.: Permeability prediction and diagenesis in tight carbonates using machine learning techniques. Mar. Pet. Geol 112, 104096 (2020). https://doi.org/10.1016/j.marpetgeo.2019.104096

    Article  Google Scholar 

  11. Hampson, D.P.; Schuelke, J.S.; Quirein, J.A.: Use of multi attributes transform to predict log properties from seismic data. Geophysics 66, 230–236 (2001). https://doi.org/10.1190/1.1444899

    Article  Google Scholar 

  12. Meshalkin, Y.; Shakirov, A.; Popov, E.; Koroteev, D.; Gurbatova, I.: Robust well-log based determination of rock thermal conductivity through machine learning. Geophys. J. Int. 222(2), 978–988 (2020). https://doi.org/10.1093/gji/ggaa209

    Article  Google Scholar 

  13. Elkatatny, S.: A self-adaptive artificial neural network technique to predict total organic carbon (TOC) based on well logs. Arab. J. Sci. Eng. 44, 6127–6137 (2019). https://doi.org/10.1007/s13369-018-3672-6

    Article  Google Scholar 

  14. Cuddy, S.J.; Glover, P.W.J.: The application of fuzzy logic and genetic algorithms to reservoir characterization and modeling. In: Wong, P.; Aminzadeh, F.; Nikravesh, M. (Eds.) Soft computing for reservoir characterization and modeling Studies in fuzziness and soft computing, Vol. 80, pp. 219–242. Physica, Heidelberg (2020)

    Google Scholar 

  15. Cuddy, S.J.; Glover, P.W.J.: The application of fuzzy logic and genetic algorithms to oil exploration, In: Developments in soft computing. Physica Verlag, pp 167–174 (2000). https://doi.org/10.1007/978-3-7908-1829-1_20.

  16. Hsieh, B.Z.; Lewis, C.; Lin, Z.S.: Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area. Comput. Geosci. UK 31(3), 263–275 (2005). https://doi.org/10.1016/j.cageo.2004.07.004

    Article  Google Scholar 

  17. Qi, L.; Carr, T.R.: Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas. Comput. Geosci. UK 32(7), 947–964 (2006). https://doi.org/10.1016/j.cageo.2005.10.020

    Article  Google Scholar 

  18. Wang, G.; Carr, T.R.: Methodology of organic-rich shale lithofacies identification and prediction: a case study from Marcellus Shale in the Appalachian basin. Comput. Geosci. UK 49, 151–163 (2012). https://doi.org/10.1016/j.cageo.2012.07.011

    Article  Google Scholar 

  19. Silversides, K.; Melkumyan, A.; Wyman, D.; Hatherly, P.: Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits. Comput. Geosci. UK 77, 118–125 (2015). https://doi.org/10.1016/j.cageo.2015.02.002

    Article  Google Scholar 

  20. Xiang, Y.; Kang, Z.; Hao, W.; Fu, K.; Wang, F.: A composite method of reservoir parameter prediction based on linear regression and neural network. Sci. Technol. Eng. 17(31), 46–52 (2017)

    Google Scholar 

  21. Iturrar, N.U.; Parra, J.O.: Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. J. Appl. Geophys. 107(8), 45–54 (2014)

    Article  Google Scholar 

  22. Parra, J.O.; Hackert, C.; Bennett, M.; Collier, H.A.: Permeability and porosity images based on NMR, sonic, and seismic reflectivity: application to a carbonate aquifer. Geophysics 22(11), 1102–1108 (2003)

    Google Scholar 

  23. Osama, A.A.; Abdel-Aal, R.E.; AlMustafa, H.: Reservoir property prediction using abductive networks. Geophysics 75(1), P1–P9 (2010)

    Article  Google Scholar 

  24. Mohebbi, A.; Kamalpour, R.; Keyvanloo, K.; Sarrafi, A.: The prediction of permeability from well logging data based on reservoir zoning, using artificial neural networks in one of an Iranian heterogeneous oilreservoir. Pet. Sci. Technol. 30, 1998–2007 (2012)

    Article  Google Scholar 

  25. Bengio, Y.: 2009 Learning deep architectures for AI. Found Trends Mach. Learn. 2(1), 1–127 (2009). https://doi.org/10.1561/2200000006

    Article  MathSciNet  MATH  Google Scholar 

  26. LeCun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  27. Krizhevsky, A.; Sutskever, I.; Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  28. Goltsev, A.; Rachkovskij, D.: A recurrent neural network for partitioning of hand drawn characters into strokes of different orientations. Int. J. Neural. Syst. 11, 463–475 (2001). https://doi.org/10.1142/S0129065701000862

    Article  Google Scholar 

  29. Yuan, S.; Liu, J.; Wang, S.; Wang, T.; Shi, P.: Seismic wave-form classification and first-break picking using convolution neural networks. IEEE Geosci. Remote. Sens. Lett. 15(2), 272–276 (2018)

    Article  Google Scholar 

  30. Yoon, D.; Yeeh, Z.; Byun, J.: Seismic data reconstruction using deep bidirectional long short-term memory with skip connections. IEEE Geosci. Remote Sens. Lett. Early Access (2020). https://doi.org/10.1109/LGRS.2020.2993847

    Article  Google Scholar 

  31. Zhu, K.; Wang, L.; Du, Y.; Jiang, C.; Sun, Z.: DeepLog: identify tight gas reservoir using multi-log signals by a fully convolutional network. IEEE Geosci. Remote Sens. Lett. 17(4), 568–571 (2020)

    Article  Google Scholar 

  32. Lin, J.; Li, H.; Liu, N.; Gao, J.; Li, Z.: Automatic lithology identification by applying LSTM to logging data: a case study in X tight rock reservoirs. IEEE Geosci. Remote Sens. Lett. Early Access 15, 15 (2020). https://doi.org/10.1109/LGRS.2020.3001282

    Article  Google Scholar 

  33. Zhang, G.; Wang, Z.; Chen, Y.: Deep learning for seismic lithology prediction. Geophys. J. Int. 215, 1368–1387 (2018). https://doi.org/10.1093/gji/ggy344

    Article  Google Scholar 

  34. Das, V.; Pollack, A.; Wollner, U.; Mukerji, T.: Convolutional neural network for seismic impedance inversion. Geophysics 84(6), R869–R880 (2019). https://doi.org/10.1190/geo2018-0838.1

    Article  Google Scholar 

  35. Pham, N.; Wu, X.; Naeini, E.Z.: Missing well log prediction using convolutional long short-term memory network. Geophysics 85, WA159–WA171 (2020). https://doi.org/10.1190/geo2019-0282.1

    Article  Google Scholar 

  36. Osarogiagbon, A.: 2020 Gamma ray log generation from drilling parameters using deep learning. J. Pet. Sci. Eng. 195, 107906 (2020). https://doi.org/10.1016/j.petrol.2020.107906

    Article  Google Scholar 

  37. Wang, J.; Cao, J.; Yuan, S.: Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network. J. Pet. Sci. Eng. 194, 107466 (2020). https://doi.org/10.1016/j.petrol.2020.107466

    Article  Google Scholar 

  38. Zhang, Y.; Zhong, H.; Wu, Z.; Zhou, H.; Ma, Q.: Improvement of petrophysical workflow for shear wave velocity prediction based on machine learning methods for complex carbonate reservoirs. J. Pet. Sci. Eng. 192, 107234 (2020). https://doi.org/10.1016/j.petrol.2020.107234

    Article  Google Scholar 

  39. Li, D.; Liu, X.; Zha, W., et al.: Automatic well test interpretation based on convolutional neural network for a radial composite reservoir. Petrol. Explor. Dev. 47(3), 583–591 (2020)

    Google Scholar 

  40. Gabriel Fabien-Ouellet, G.; Rahul Sarkar, R.: Seismic velocity estimation: A deep recurrent neural-network approach. Geophysics 85, U21–U29 (2020). https://doi.org/10.1190/geo2018-0786.1

    Article  Google Scholar 

  41. Song, S.; Hou, J.; Dou, L.; Song, Z.; Sun, S.: Geologist-level wireline log shape identification with recurrent neural networks. Comput. Geosci. UK 134, 104313 (2020). https://doi.org/10.1016/j.cageo.2019.104313

    Article  Google Scholar 

  42. Li, J.; Liu, Y.; Yin, C.; Ren, X.; Su, Y.: Fast imaging of time-domain airborne EM data using deep learning technology. Geophysics 85, E163–E170 (2020). https://doi.org/10.1190/geo2019-0015.1

    Article  Google Scholar 

  43. Feng, R.: Estimation of reservoir porosity based on seismic inversion results using deep learning methods. J Nat Gas Sci Eng. (2020). https://doi.org/10.1016/j.jngse.2020.103270.

    Article  Google Scholar 

  44. Feng, R.: Hansen, T.H.; Grana, D.; Balling, N.: An unsupervised deep-learning method for porosity estimation based on poststack seismic data. Geophysics, 85, M97–M105 (2020).

    Article  Google Scholar 

  45. Zhang, Z.; Wang, Y.; Wang, P.: On a Deep Learning Method of Estimating Reservoir Porosity. Mathematical Problems in Engineering, Hindawi, 1–13 (2021). https://doi.org/10.1155/2021/6641678.

  46. Zeng, L.; Ren, W.; Shan, L.: Attention-based bidirectional gated recurrent unit neural networks for well logs prediction and lithology identification. Neurocomputing 414, 153–171 (2020)

    Article  Google Scholar 

  47. Tian, M.; Omre, H.; Xu, H.: Inversion of well logs into lithology classes accounting for spatial dependencies by using hidden markov models and recurrent neural networks. J. Pet. Sci. Eng. 196, 107598 (2021). https://doi.org/10.1016/j.petrol.2020.107598

    Article  Google Scholar 

  48. Imamverdiyev, Y.; Sukhostat, L.: Lithological facies classification using deep convolutional neural network. J. Pet. Sci. Eng. 174, 216–228 (2019). https://doi.org/10.1016/j.petrol.2018.11.023

    Article  Google Scholar 

  49. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021). https://doi.org/10.1016/j.ymssp.2020.107398

    Article  Google Scholar 

  50. Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M.: Real-time motor fault detection by 1-D Convolutional neural networks. IEEE Trans. Ind. Electron. 63(11), 7067–7075 (2016). https://doi.org/10.1109/TIE.2016.2582729

    Article  Google Scholar 

  51. Deng, Y.; Wang, L.; Jia, H.; Tong, X.; Li, F.: A sequence-to-sequence deep learning architecture based on bidirectional GRU for type recognition and time location of combined power quality disturbance. IEEE Trans. Ind. Inform. 15(8), 4481–4493 (2019). https://doi.org/10.1109/TII.2019.2895054

    Article  Google Scholar 

  52. Schuster, M.; Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997)

    Article  Google Scholar 

  53. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

  54. Hubel, D.H.; Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962). https://doi.org/10.1113/jphysiol.1962.sp006837

    Article  Google Scholar 

  55. Zhao, J.; Mao, X.; Chen, L.: Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process Control 47, 312–323 (2019). https://doi.org/10.1016/j.bspc.2018.08.035

    Article  Google Scholar 

  56. Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017)

    Article  Google Scholar 

  57. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  58. Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016). https://doi.org/10.1109/tmi.2016.2528162

    Article  Google Scholar 

  59. Cleeremans, A.; Servan-Schreiber, D.; McClelland, J.L.: Finite state automata and simple recurrent networks. Neural. Comput. 1, 372–381 (1989)

    Article  Google Scholar 

  60. Bengio, Y.I.; Goodfellow, J.; Courville, A.: Deep Learning, Vol. 1, p. 326–366. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  61. Hochreiter, S.; Schmidhuber, J.: Long short-term memory. Neural. Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  62. Cho, K.; Van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation: Conference on Empirical Methods in Natural Language Processing, pp 1724–1734. Association for Computational Linguistics, Stroudsburg (2014)

  63. Su, Y.; Kuo, J.: On extended long short-term memory and dependent bidirectional recurrent neural network. Neurocomputing 356, 151–161 (2018). https://doi.org/10.1016/j.neucom.2019.04.044

    Article  Google Scholar 

  64. Chollet, F.: Keras (2015). https://github.com/fchollet/keras.

  65. Abadi, M.; Barham, P.; Chen, J.; et al.: Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}, vol 16, pp 265–283 (2016).

  66. Yang, K.; Zhu, H.; Ye, J.; Zhang, K.; Ke, G., et al.: Geological characteristics of tight sandstone gas reservoirs in west Sichuan basin[M]. Science Press, Beijing (2012)

    Google Scholar 

  67. Chen, J.; Zha, M.; Zhou, Y.: Application of organic inclusion in oil–gas migration. Geol. Sci. Technol. Inf. 19(1), 61–64 (2009)

    Google Scholar 

  68. Ye, S.; Zhu, H.; Li, R.; Yang, Y.; Li, Q.: Tracing natural gas migration by integrating organic and inorganic geochemical data: a case study of the Jurassic gas fields in western Sichuan basin, SW China. Pet. Explor. Dev. 44(4), 549–560 (2017)

    Article  Google Scholar 

  69. Zeng, Y.; Li, H.; Zhou, W.; Chen, J.; Wu, D.: High-yield enrichment laws of Shaximiao Formation tight sandstone gas reservoir of complex “narrow” channel in Zhongjiang Gas Field, in the eastern slope of West Sichuan Depression. Nat. Gas Explor. Dev. 40(4), 1–8 (2017)

    Google Scholar 

  70. Li, Z.; Ran, L.; Li, H.; Liu, F.; Zhou, W.; X, Yu: Fault features and enrichment laws of narrow-channel distal tight sandstone gas reservoirs: a case study of the Jurassic Shaximiao Fm gas reservoir in the Zhongjiang Gas Field, Sichuan Basin. Nat. Gas Ind. 36(7), 1–7 (2016)

    Google Scholar 

  71. Tang, D.; Chen, H.; Xie, J.; Luo, Y.; Cao, S.: Reservoir forming conditions of Jurassic Shaximiao Formation, West Sichuan Basin. Nat. Gas Explor. Dev. 3(5), 14–19 (2005)

    Google Scholar 

  72. Lambrecht, B.N.; Anderkerken, M.V.; Hammad, H.: The emergingrole of ADAM metalloproteinases in immunity. Nat. Rev. Immunol. 18, 745–758 (2018). https://doi.org/10.1038/s41577-018-0068-5

    Article  Google Scholar 

  73. Wang, S.; Chen, Z.; Chen, S.: Applicability of deep neural networks on production forecasting in Bakken shale reservoirs. J. Pet. Sci. Eng. 179, 112–125 (2019)

    Article  Google Scholar 

  74. Srivastava, N.; Hinton, G.; Krizhevsk, Y.A.: Dropout: a simple way to prevent neural networks from over fitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant No. 42030812, 42042046, 41974160, and 41430323).

Author information

Authors and Affiliations

Authors

Contributions

Jun Wang contributed to the conceptualization, methodology, software, writing—original draft, and validation. Junxing Cao was involved in the writing—review and editing, funding acquisition, and supervision.

Corresponding author

Correspondence to Junxing Cao.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cao, J. Deep Learning Reservoir Porosity Prediction Using Integrated Neural Network. Arab J Sci Eng 47, 11313–11327 (2022). https://doi.org/10.1007/s13369-021-06080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06080-x

Keywords

Navigation