Skip to main content

Advertisement

Log in

Enhancement of Cd(II) Adsorption on Microalgae–Montmorillonite Composite

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

As important parts of microbe–mineral associations, microalgae–montmorillonite composites are common in nature environment, which have been overlooked for a long time. In this study, the binding of Cd(II) in the montmorillonite, microalgae and their 1:5, 1:10 mass ratio composites interface were investigated. The results showed that maximum adsorption capacity of 1:5 and 1:10 mass ratio binary composites were 65.25 mg g−1 and 55.49 mg g−1, respectively, which both higher the theoretically calculated capacity from single montmorillonite and microalgae at pH 5.5. Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that phosphoryl and carboxyl functional groups on the algal cellular surface played major roles in both microalgae–montmorillonite composite formation and Cd(II) adsorption. Extended X-ray absorption fine structure (EXAFS) further probed that higher sorption on composites were attributed to Cd(II) bridging between microalgae and montmorillonite, in which monodentate phosphoryl-Cd and carboxyl-Cd complexes on microalgae side, leading Cd(II) to a more stabilized state. In addition, the montmorillonite promoted dispersion of microalgae, releasing more carboxyl and phosphoryl functional groups as Cd(II) binding sites on the microalgae surface. These findings highlight the function of microalgae in the microalgae–clay mineral associations for Cd(II) fixation and provide further insight into the sequestration and migration of toxic metals in natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun, Y.; Sun, G.; Xu, Y.; Wang, L.; Liang, X.; Lin, D.: Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma 193–194, 149–155 (2013). https://doi.org/10.1016/j.geoderma.2012.07.012

    Article  Google Scholar 

  2. Houessionon, M.G.K.; Ouendo, E.D.; Bouland, C.; Takyi, S.A.; Kedote, N.M.; Fayomi, B.; Fobil, J.N.; Basu, N.: Environmental Heavy Metal Contamination from Electronic Waste (E-Waste) recycling activities worldwide: a systematic review from 2005 to 2017. Int. J. Environ. Res. Public Health 18, 3517 (2021). https://doi.org/10.3390/ijerph18073517

    Article  Google Scholar 

  3. Kan, X.; Dong, Y.; Feng, L.; Zhou, M.; Hou, H.: Contamination and health risk assessment of heavy metals in China’s lead-zinc mine tailings: a meta-analysis. Chemosphere 267, 128909 (2021). https://doi.org/10.1016/j.chemosphere.2020.128909

    Article  Google Scholar 

  4. Ayangbenro, A.S.; Babalola, O.O.: A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health 14, 94 (2017). https://doi.org/10.3390/ijerph14010094

    Article  Google Scholar 

  5. Fang, L.; Cai, P.; Li, P.; Wu, H.; Liang, W.; Rong, X.; Chen, W.; Huang, Q.: Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals. J. Hazard Mater. 181, 1031–1038 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.118

    Article  Google Scholar 

  6. Li, G.L.; Zhou, C.H.; Fiore, S.; Yu, W.H.: Interactions between microorganisms and clay minerals: new insights and broader applications. Appl. Clay Sci. 177, 91–113 (2019). https://doi.org/10.1016/j.clay.2019.04.025

    Article  Google Scholar 

  7. Megharaj, M.; Singleton, I.; McClure, N.C.; Naidu, R.: Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch. Environ. Contam. Toxicol. 38, 439–445 (2000). https://doi.org/10.1007/s002449910058

    Article  Google Scholar 

  8. Suresh Kumar, K.; Dahms, H.-U.; Won, E.-J.; Lee, J.-S.; Shin, K.-H.: Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113, 329–352 (2015)

    Article  Google Scholar 

  9. Xia, L.; Xia, L.; Li, H.; Li, H.; Song, S.; Song, S.: Cell surface characterization of some oleaginous green algae. J. Appl. Phycol. 28, 2323–2332 (2016). https://doi.org/10.1007/s10811-015-0768-1

    Article  Google Scholar 

  10. Gupta, S.S.; Bhattacharyya, K.G.: Adsorption of heavy metals on kaolinite and montmorillonite: a review. Phys. Chem. Chem. Phys. 14, 6698 (2012)

    Article  Google Scholar 

  11. Hong, Z.; Rong, X.; Cai, P.; Dai, K.; Liang, W.; Chen, W.; Huang, Q.: Initial adhesion of Bacillus subtilis on soil minerals as related to their surface properties. Eur. J. Soil Sci. 63, 457–466 (2012). https://doi.org/10.1111/j.1365-2389.2012.01460.x

    Article  Google Scholar 

  12. Wang, H.; Wu, P.; Liu, J.; Yang, S.; Ruan, B.; Rehman, S.; Liu, L.; Zhu, N.: The regulatory mechanism of Chryseobacterium sp. resistance mediated by montmorillonite upon cadmium stress. Chemosphere 240, 124851 (2020). https://doi.org/10.1016/j.chemosphere.2019.124851

    Article  Google Scholar 

  13. Qu, C.; Ma, M.; Chen, W.; Cai, P.; Huang, Q.: Surface complexation modeling of Cu(II) sorption to montmorillonite–bacteria composites. Sci. Total Environ. 607–608, 1408–1418 (2017). https://doi.org/10.1016/j.scitotenv.2017.07.068

    Article  Google Scholar 

  14. Du, H.; Huang, Q.; Peacock, C.L.; Tie, B.; Lei, M.; Liu, X.; Wei, X.: Competitive binding of Cd, Ni and Cu on goethite organo–mineral composites made with soil bacteria. Environ. Pollut. 243, 444–452 (2018). https://doi.org/10.1016/j.envpol.2018.08.087

    Article  Google Scholar 

  15. Sawalha, M.F.; Peralta-Videa, J.R.; Romero-González, J.; Gardea-Torresdey, J.L.: Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J. Colloid Interface Sci. 300, 100–104 (2006). https://doi.org/10.1016/j.jcis.2006.03.029

    Article  Google Scholar 

  16. Shanmugam, S.; Karthik, K.; Veerabagu, U.; Hari, A.; Swaminathan, K.; Al-Kheraif, A.A.; Whangchai, K.: Bi-model cationic dye adsorption by native and surface-modified Trichoderma asperellum BPL MBT1 biomass: from fermentation waste to value-added biosorbent. Chemosphere 277, 130311 (2021). https://doi.org/10.1016/j.chemosphere.2021.130311

    Article  Google Scholar 

  17. Shanmughaprabha, P.; Sasireka, S.; Sabarathinam, S.; Selvakumari, G.: Equilibrium and kinetic studies of uptake of nickel in aqueous solution. Desalin. Water Treat. 59, 160–167 (2017). https://doi.org/10.5004/dwt.2017.0051

    Article  Google Scholar 

  18. Chen, H.; Tan, W.; Lv, W.; Xiong, J.; Wang, X.; Yin, H.; Fang, L.: Molecular mechanisms of lead binding to ferrihydrite-bacteria composites: ITC, XAFS, and μ-XRF investigations. Environ. Sci. Technol. (2020). https://doi.org/10.1021/acs.est.9b06288

    Article  Google Scholar 

  19. Du, H.; Qu, C.; Liu, J.; Chen, W.; Cai, P.; Shi, Z.; Yu, X.-Y.; Huang, Q.: Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species. Environ. Pollut. 229, 871–878 (2017). https://doi.org/10.1016/j.envpol.2017.07.052

    Article  Google Scholar 

  20. Moon, E.M.; Peacock, C.L.: Adsorption of Cu(II) to ferrihydrite and ferrihydrite–bacteria composites: importance of the carboxyl group for Cu mobility in natural environments. Geochim. Cosmochim. Acta 92, 203–219 (2012). https://doi.org/10.1016/j.gca.2012.06.012

    Article  Google Scholar 

  21. Qu, C.; Du, H.; Ma, M.; Chen, W.; Cai, P.; Huang, Q.: Pb sorption on montmorillonite-bacteria composites: a combination study by XAFS, ITC and SCM. Chemosphere 200, 427–436 (2018)

    Article  Google Scholar 

  22. Koningsberger, D.C.; Mojet, B.L.; Dorssen, G.E.V.; Ramaker, D.E.: XAFS Spectroscopy: fundamental principles and data analysis. Top. Catal. 10, 143–155 (2000). https://doi.org/10.1023/A:1019105310221

    Article  Google Scholar 

  23. Newville, M.: IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001)

    Article  Google Scholar 

  24. Ravel, B.; Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/s0909049505012719

    Article  Google Scholar 

  25. Rong, X.; Huang, Q.; He, X.; Chen, H.; Cai, P.; Liang, W.: Interaction of Pseudomonas putida with kaolinite and montmorillonite: a combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids Surf. B 64, 49–55 (2008). https://doi.org/10.1016/j.colsurfb.2008.01.008

    Article  Google Scholar 

  26. Shanmughaprabha, P.; Sasireka, S.; Sabarathinam, S.; Selvakumari, G.: Efficiency of may flower seed carbon to uptake Fe (II) from aqueous solution: kinetic and isotherm studies. Environ. Prog. Sustain. Energy (2018). https://doi.org/10.1002/ep.12996

    Article  Google Scholar 

  27. Vollrath, S.; Behrends, T.; Koch, C.B.; Cappellen, P.V.: Effects of temperature on rates and mineral products of microbial Fe(II) oxidation by leptothrix cholodnii at microaerobic conditions. Geochim. Cosmochim. Acta 108, 107–124 (2013). https://doi.org/10.1016/j.gca.2013.01.019

    Article  Google Scholar 

  28. Zhang, L.; Luo, H.; Liu, P.; Fang, W.; Geng, J.: A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions. Int. J. Biol. Macromol. 87, 586–596 (2016). https://doi.org/10.1016/j.ijbiomac.2016.03.027

    Article  Google Scholar 

  29. Li, Y.; Song, S.; Xia, L.; Yin, H.; García Meza, J.V.; Ju, W.: Enhanced Pb(II) removal by algal-based biosorbent cultivated in high-phosphorus cultures. Chem. Eng. J. 361, 167–179 (2019). https://doi.org/10.1016/j.cej.2018.12.070

    Article  Google Scholar 

  30. Liu, Y.; Alessi, D.S.; Owttrim, G.W.; Kenney, J.P.L.; Zhou, Q.; Lalonde, S.V.; Konhauser, K.O.: Cell surface acid-base properties of the cyanobacterium Synechococcus: influences of nitrogen source, growth phase and N: P ratios. Geochim. Cosmochim. Acta 187, 179–194 (2016)

    Article  Google Scholar 

  31. Chubar, N.; Visser, T.; Avramut, C.; de Waard, H.: Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: effect of contact time. Geochim. Cosmochim. Acta 100, 232–250 (2013). https://doi.org/10.1016/j.gca.2012.09.051

    Article  Google Scholar 

  32. Huang, R.; Huo, G.; Song, S.; Li, Y.; Xia, L.; Gaillard, J.-F.: Immobilization of mercury using high-phosphate culture-modified microalgae. Environ. Pollut. 254, 112966 (2019). https://doi.org/10.1016/j.envpol.2019.112966

    Article  Google Scholar 

  33. Fang, L.; Huang, Q.; Wei, X.; Liang, W.; Rong, X.; Chen, W.; Cai, P.: Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Biores. Technol. 101, 5774–5779 (2010). https://doi.org/10.1016/j.biortech.2010.02.075

    Article  Google Scholar 

  34. Chen, X.; Chen, L.; Shi, J.; Wu, W.; Chen, Y.: Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution. Colloids Surf., B 61, 170–175 (2008). https://doi.org/10.1016/j.colsurfb.2007.08.002

    Article  Google Scholar 

  35. Yan, S.; Cai, Y.; Li, H.; Song, S.; Xia, L.: Enhancement of cadmium adsorption by EPS-montmorillonite composites. Environ. Pollut. 252, 1509–1518 (2019). https://doi.org/10.1016/j.envpol.2019.06.071

    Article  Google Scholar 

  36. Xia, L.; Li, H.; Song, S.: Cell surface characterization of some oleaginous green algae. J. Appl. Phycol. 28, 2323–2332 (2015). https://doi.org/10.1007/s10811-015-0768-1

    Article  Google Scholar 

  37. Cui, J.; Zhang, Z.; Han, F.: Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Appl. Clay Sci. 190, 105543 (2020). https://doi.org/10.1016/j.clay.2020.105543

    Article  Google Scholar 

  38. Manirethan, V.; Raval, K.; Balakrishnan, R.M.: Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri. Environ. Pollut. 257, 113576 (2019)

    Article  Google Scholar 

  39. Du, H.; Lin, Y.; Chen, W.; Cai, P.; Rong, X.; Shi, Z.-H.; Huang, Q.: Copper adsorption on composites of goethite, cells of Pseudomonas putida and humic acid. Eur. J. Soil Sci. 68, 514–523 (2017). https://doi.org/10.1111/ejss.12430

    Article  Google Scholar 

  40. Lei, M.; Tao, J.; Yang, R.; Tie, B.; Liu, X.; Wei, X.; Du, H.: Binding of Sb(III) by Sb-tolerant Bacillus cereus cell and cell-goethite composite: implications for Sb mobility and fate in soils and sediments. J. Soils Sediments 19, 2850–2858 (2019). https://doi.org/10.1007/s11368-019-02272-z

    Article  Google Scholar 

  41. Zhu, C.; Liu, F.; Zhang, Y.; Wei, M.; Zhang, X.; Ling, C.; Li, A.: Nitrogen-doped chitosan-Fe(III) composite as a dual-functional material for synergistically enhanced co-removal of Cu(II) and Cr(VI) based on adsorption and redox. Chem. Eng. J. 306, 579–587 (2016). https://doi.org/10.1016/j.cej.2016.07.096

    Article  Google Scholar 

  42. Zeng, L.; Chen, Y.; Zhang, Q.; Guo, X.; Peng, Y.; Xiao, H.; Chen, X.; Luo, J.: Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohyd. Polym. 130, 333–343 (2015). https://doi.org/10.1016/j.carbpol.2015.05.015

    Article  Google Scholar 

  43. Chen, L.; Wu, P.; Chen, M.; Lai, X.; Ahmed, Z.; Zhu, N.; Dang, Z.; Bi, Y.; Liu, T.: Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl. Clay Sci. 159, 74–82 (2018). https://doi.org/10.1016/j.clay.2017.12.050

    Article  Google Scholar 

  44. Mikutta, R.; Zang, U.; Chorover, J.; Haumaier, L.; Kalbitz, K.: Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms. Geochim. Cosmochim. Acta 75, 3135–3154 (2011). https://doi.org/10.1016/j.gca.2011.03.006

    Article  Google Scholar 

  45. Li, Y.; Xia, L.; Huang, R.; Xia, C.; Song, S.: Algal biomass from the stable growth phase as a potential biosorbent for Pb(II) removal from water. RSC Adv. 7, 34600–34608 (2017)

    Article  Google Scholar 

  46. Ding, L.; Tan, W.-F.; Xie, S.-B.; Mumford, K.; Lv, J.-W.; Wang, H.-Q.; Fang, Q.; Zhang, X.-W.; Wu, X.-Y.; Li, M.: Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp. - Coated biochar as green trapping agent. Environ. Pollut. 242, 778–787 (2018). https://doi.org/10.1016/j.envpol.2018.07.050

    Article  Google Scholar 

  47. Li, M.; Zhang, Z.; Li, R.; Wang, J.J.; Ali, A.: Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan. Int. J. Biol. Macromol. 86, 876 (2016)

    Article  Google Scholar 

  48. Bigi, A.; Foresti, E.B.; Gazzano, M.; Ripamonti, A.; Roveri, N.: Cadmium substituted tricalcium phosphate and crystal structure refinement of beta-tricadmium phosphate. Chem. Informationsdienst 17, 170–171 (1986)

    Google Scholar 

  49. Post, M.L.; Trotter, J.: Crystal and molecular structure of cadmium(II) cyanoacetate. J. Chem. Soc., Dalton Trans. 5, 285–288 (1974)

    Article  Google Scholar 

  50. Post, M.L.; Trotter, J.: Crystal and molecular structure of cadmium(II) maleate dihydrate. J. Chem. Soc. Dalton Trans. 7, 674 (1974)

    Article  Google Scholar 

  51. Karlsson, T.; Persson, P.; Skyllberg, U.: Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter. Environ. Sci. Technol. 39, 3048–3055 (2005). https://doi.org/10.1021/es048585a

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 32061123009, 52074203), Qingchuang Talent Incubation Program from Colleges and universities in Shandong Province (Grant No. 2019.133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Li, Y., Xia, L. et al. Enhancement of Cd(II) Adsorption on Microalgae–Montmorillonite Composite. Arab J Sci Eng 47, 6715–6727 (2022). https://doi.org/10.1007/s13369-021-06063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06063-y

Keywords

Navigation