Skip to main content
Log in

Back-Analysis Scheme of Shear Strength Parameters of Soil Slope Based on Strength Asynchronous Reduction Mode

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Shear strength parameters of soil (i.e., cohesion c and internal friction angle φ) are inevitably involved in slope stability analysis. Back-analysis scheme of c and φ is becoming increasingly important for more accurate evaluation of slope stability, while few reports consider the inconsistent attenuation of c and tanφ to determine c and φ. This paper presents a back-analysis scheme of c and φ based on strength asynchronous reduction mode (SARM). In the scheme, SARM was employed to characterize the inconsistent attenuation of c and tanφ by the reduction coefficient of c and tanφ (i.e., SRCc,i and SRCφ,i) and the calculation model of safety factor (SF). Mechanism and theoretical derivation for back-analysis scheme with SARM were then investigated to establish a relationship between c, tanφ, SRCc,i and SRCφ,i. The shear strength parameters ratio (SSPR) consisting of c and φ as well as the dimensionless shear strength parameter (λ) with SSPR, slope height (H) and unit weight (γ) was further derived to control the position of the critical slip surface. This back-analysis scheme provides the basis for obtaining the initial cohesion (cis) and initial internal friction angle (φis) through the linkage of λ (or SSPR) with the position of the critical slip surface. A case example is used to validate the reasonability of the proposed back-analysis scheme by taking the central coordinate of circle of the critical slip surface (O (x, y)), arc radius (R) and relative ratio of safety factor (RRSF) as the evaluation standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data and material are contained within the article.

Code Availability

Software application is appropriate.

References

  1. Glade, T.: Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ. Geol. 35(2–3), 160–174 (1998). https://doi.org/10.1007/s002540050302

    Article  Google Scholar 

  2. Lin, F.; Wu, L.Z.; Huang, R.Q.; Zhang, H.J.: Formation and characteristics of the Xiaoba landslide in Fuquan, Guizhou, China. Landslides 15(4), 669–681 (2018). https://doi.org/10.1007/s10346-017-0897-5

    Article  Google Scholar 

  3. Gao, D.J.; Xu, W.Y.: Back analysis of calculation parameters for Dashiban landslide at Three-Gorges Reservoir on Yangtze River. J. Hohai Univ. Sci. Rev. 34(1), 74–78 (2006). https://doi.org/10.3321/j.issn:1000-1980.2006.01.018

    Article  Google Scholar 

  4. Okui, Y.; Tokunaga, A.; Shinji, M.; Mori, S.: New back analysis method of slope stability by using field measurements. Int. J. Rock Mech. Min. Sci. 34(3), 234 (1997). https://doi.org/10.1016/S1365-1609(97)00170-6

    Article  Google Scholar 

  5. Wesley, L.D.; Leelaratnam, V.: Shear strength parameters from back-analysis of single slips. Geotechnique 51(4), 373–374 (2001). https://doi.org/10.1680/geot.2001.51.4.373

    Article  Google Scholar 

  6. Shang, Y.J.; Cai, J.G.; Hao, W.D.; Wu, X.Y.; Li, S.H.: Intelligent back analysis of displacements using precedent type analysis for tunneling. Tunn. Undergr. Sp. Tech. 17(4), 381–389 (2002). https://doi.org/10.1016/S0886-7798(02)00041-X

    Article  Google Scholar 

  7. Hisatake, M.; Hieda, Y.: Three-dimensional back-analysis method for the mechanical parameters of the new ground ahead of a tunnel face. Tunn. Undergr. Sp. Tech. 23(4), 373–380 (2008). https://doi.org/10.1016/j.tust.2007.06.006

    Article  Google Scholar 

  8. Chousianitis, K.; Del Gaudio, V.; Sabatakakis, N.; Kavoura, K.; Drakatos, G.; Bathrellos, G.D.; Skilodimou, H.D.: Assessment of earthquake-induced landslide hazard in Greece: from arias intensity to spatial distribution of slope resistance demand. Bull. Seismol. Soc. Am. 106(1), 174–188 (2016). https://doi.org/10.1785/0120150172

    Article  Google Scholar 

  9. Öge, İF.: Investigation of design parameters of a failed soil slope by back analysis. Eng. Fail. Anal. 82, 266–279 (2017). https://doi.org/10.1016/j.engfailanal.2017.08.009

    Article  Google Scholar 

  10. Berti, M.; Bertello, L.; Bernardi, A.R.; Caputo, G.: Back analysis of a large landslide in a flysch rock mass. Landslides 14(6), 2041–2058 (2017). https://doi.org/10.1007/s10346-017-0852-5

    Article  Google Scholar 

  11. Huang, Y.Y.; Li, C.G.: Back-analysis for the elasto-viscoplastic parameters of landslides based on the observed displacements: a case study of the Wujiang Landslide, China. Arab. J. Sci. Eng. 44(5), 4639–4651 (2019). https://doi.org/10.1007/s13369-018-3498-2

    Article  Google Scholar 

  12. Wang, Y.X.; Wang, Y.J.; Jiang, L.; Sun, P.; Lin, X.C.; Li, S.Y.: Stability assessment of landslides in Dahuaqiao reservoir area based on back analysis of slope monitoring. Adv. Civ. Eng. 2019, 2563183 (2019). https://doi.org/10.1155/2019/2563183

    Article  Google Scholar 

  13. Derghoum, R.; Meksaouine, M.: Coupled finite element modelling of geosynthetic reinforced embankment slope on soft soils considering small and large displacement analyses. Arab. J. Sci. Eng. 44(5), 4555–4573 (2019). https://doi.org/10.1007/s13369-018-3461-2

    Article  Google Scholar 

  14. Zienkiewicz, O.C.; Humpheson, C.; Lewis, R.W.: Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25(4), 671–689 (1975). https://doi.org/10.1680/geot.1975.25.4.671

    Article  Google Scholar 

  15. Griffiths, D.V.; Marquez, R.M.: Three-dimensional slope stability analysis by elasto-plastic finite elements. Géotechnique 57(6), 537–546 (2007). https://doi.org/10.1680/geot.2007.57.6.537

    Article  Google Scholar 

  16. Kelesoglu, M.K.: The evaluation of three-dimensional effects on slope stability by the strength reduction method. KSCE J. Civ. Eng. 20(1), 229–242 (2016). https://doi.org/10.1007/s12205-015-0686-4

    Article  Google Scholar 

  17. Schneider-Muntau, B.; Medicus, G.; Fellin, W.: Strength reduction method in Barodesy. Comput. Geotech. 95, 57–67 (2018). https://doi.org/10.1016/j.compgeo.2017.09.010

    Article  Google Scholar 

  18. Sun, C.W.; Chai, J.R.; Ma, B.; Luo, T.; Gao, Y.; Qiu, H.F.: Stability charts for pseudostatic stability analysis of 3D homogeneous soil slopes using strength reduction finite element method. Adv. Civ. Eng. 2019, 6025698 (2019). https://doi.org/10.1155/2019/6025698

    Article  Google Scholar 

  19. Lin, H.D.; Wang, W.C.; Li, A.J.: Investigation of dilatancy angle effects on slope stability using the 3D finite element method strength reduction technique. Comput. Geotech. 118, 103295 (2020). https://doi.org/10.1016/j.compgeo.2019.103295

    Article  Google Scholar 

  20. Taylor, D.W.: Fundamentals of Soil Mechanics. Wiley, New York (1948)

    Book  Google Scholar 

  21. Hajiabdolmajid, V.; Kaiser, P.K.; Martin, C.D.: Modelling brittle failure of rock. Int. J. Rock Mech. Min. Sci. 39(6), 731–741 (2002). https://doi.org/10.1016/S1365-1609(02)00051-5

    Article  Google Scholar 

  22. Chen, X.P.; Huang, J.W.; Yin, S.H.; Zheng, J.Z.: Experimental study of strength property of slip zone soils. Rock Soil Mech. 32(11), 3212–3218 (2011). https://doi.org/10.3969/j.issn.1000-7598.2011.11.003

    Article  Google Scholar 

  23. O’Brien, K.; Parrock, A.: Variations in cohesion/friction with strain and significance in design. In: 1st Southern African geotechnical conference, Sun City, South Africa, pp. 237–242 (2016). https://doi.org/10.1201/b21335-43

  24. Guo, S.F.; Li, N.; Liu, C.; Liu, N.F.; Liu, W.P.: Unraveling the progressive failure behaviors and mechanisms of the slope with a local dynamic method based on the double strength reduction. Int. J. Geomech. 20(6), 04020069 (2020). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001693

    Article  Google Scholar 

  25. Dawson, E.M.; Roth, W.H.; Drescher, A.: Slope stability analysis by strength reduction. Géotechnique 49(6), 835–840 (1999). https://doi.org/10.1680/geot.1999.49.6.835

    Article  Google Scholar 

  26. Ahmed, Z.; Wang, S.H.; Hashmi, M.Z.; Zhu, C.J.; Zhang, Z.S.; Jierula, A.; Wang, P.Y.: Failure analysis of rock cut slope formed by layered blocks at Fort Munro, Pakistan. Arab. J. Geosci. 13(9), 338 (2020). https://doi.org/10.1007/s12517-020-05347-1

    Article  Google Scholar 

  27. Liu, F.M.: Stability analysis of geotechnical slope based on strength reduction method. Geotech. Geol. Eng. 38(4), 3653–3665 (2020). https://doi.org/10.1007/s10706-020-01243-3

    Article  Google Scholar 

  28. Cheng, Y.M.; Lansivaara, T.; Wei, W.B.: Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 34(3), 137–150 (2007). https://doi.org/10.1016/j.compgeo.2006.10.011

    Article  Google Scholar 

  29. Zhang, L.Y.; Zheng, Y.R.; Zhao, S.Y.; Shi, W.M.: The feasibility study of strength-reduction method with FEM for calculating safety factors of soil slope stability. J. Hydraul. Eng. 1, 21–27 (2003). https://doi.org/10.3321/j.issn:0559-9350.2003.01.005

    Article  Google Scholar 

  30. Yuan, W.; Bai, B.; Li, X.C.; Wang, H.B.: A strength reduction method based on double reduction parameters and its application. J. Cent. South Univ. 20, 2555–2562 (2013). https://doi.org/10.1007/s11771-013-1768-4

    Article  Google Scholar 

  31. Zhong, D.H.; Zhang, X.X.; Ao, X.F.; Wang, X.L.; Tong, D.W.; Ren, B.Y.: Study on coupled 3D seepage and stress fields of the complex channel project. Sci. China Technol. Sci. 56(8), 1906–1914 (2013). https://doi.org/10.1007/s11431-013-5284-4

    Article  Google Scholar 

  32. Zhu, X.B.; Wang, X.L.; Liu, M.H.; Wang, Z.; Zhang, X.X.: Channel stability analysis by one-way fluid structure interaction: a case study in China. Trans. Tianjin Univ. 23, 451–460 (2017). https://doi.org/10.1007/s12209-017-0072-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the General Science and Technology Project of Department of Transportation of Jiangxi Province (Grant No. 2020X0013), Key Laboratory for Special Area Highway Engineering of Ministry of Education. The authors would also like to acknowledge the editors and reviewers of this paper for their very valuable comments and remarks.

Funding

The study was supported by the General Science and Technology Project of Department of Transportation of Jiangxi Province (Grant No. 2020X0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongda Chen.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Chen, Z., Xu, K. et al. Back-Analysis Scheme of Shear Strength Parameters of Soil Slope Based on Strength Asynchronous Reduction Mode. Arab J Sci Eng 47, 4323–4334 (2022). https://doi.org/10.1007/s13369-021-06037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06037-0

Keywords

Navigation