Skip to main content
Log in

Microstructure Evolution in Direct Energy Deposited Multilayer Inconel 718

  • RESEARCH ARTICLE - SPECIAL ISSUE - Impact of Advanced Tribological Technologies on Modern Industry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present work is aimed to investigate the microstructure evolution in multilayer Inconel 718 (IN718) superalloy deposited by laser-aided direct energy deposition, which was studied using a scanning electron microscope (SEM). The results show a dendritic morphology with long columnar grains at the bottom and middle regions, while equiaxed structures are observed at the top deposited region. The niobium (Nb)-rich Laves phase formation at the interdendritic area is found in the IN718 superalloy microstructure. Energy-dispersive X-ray spectroscopy (EDS) analysis results confirm severe elemental (Nb, Mo, and Ti) segregation in IN718 deposition. A 17% increase in Nb segregation is observed at the top region, whereas it is only 4% in the bottom region. Additionally, the dendrites’ size is increased along with Laves phase quantity as the number of layers is increased. Moreover, the microhardness studies showed a decreasing trend with the increment in layers which could be due to the depletion of strengthening phases in the dendritic nickel (Ni) matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kundin, J.; Mushongera, L.; Emmerich, H.: Phase-field modeling of microstructure formation during rapid solidification in Inconel 718 superalloy. Acta Mater. 95, 343–356 (2015). https://doi.org/10.1016/j.actamat.2015.05.052

    Article  Google Scholar 

  2. Amirjan, M.; Sakiani, H.: Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy. Int. J. Adv. Manuf. Technol. 103, 1769–1780 (2019). https://doi.org/10.1007/s00170-019-03545-0

    Article  Google Scholar 

  3. Ding, R.G.; Huang, Z.W.; Li, H.Y.; Mitchell, I.; Baxter, G.; Bowen, P.: Electron microscopy study of direct laser deposited IN718. Mater. Charact. 106, 324–337 (2015). https://doi.org/10.1016/j.matchar.2015.06.017

    Article  Google Scholar 

  4. Cieslak, M.J., Knorovsky, G.A., Headley, T.J., Romig, Jr, A.D.: The Solidification Metallurgy of Alloy 718 and Other Nb-Containing Superalloys. No. SAND-89–0264C; CONF-890646–1 (1989). https://doi.org/10.7449/1989/superalloys_1989_59_68

  5. Paulonis, D.F.; Schirra, J.J.: Alloy 718 at Pratt & Whitney - Historical perspective and future challenges. Proc. Int. Symp. Superalloys Var. Deriv. 1, 13–23 (2001). https://doi.org/10.7449/2001/superalloys_2001_13_23

    Article  Google Scholar 

  6. Robles Hernández, F.C.; Okonkwo, A.O.; Kadekar, V.; Metz, T.; Badi, N.: Laser cladding: the alternative for field thermite welds life extension. Mater. Des. 111, 165–173 (2016). https://doi.org/10.1016/j.matdes.2016.08.061

    Article  Google Scholar 

  7. Sexton, L.; Lavin, S.; Byrne, G.; Kennedy, A.: Laser cladding of aerospace materials. J. Mater. Process. Technol. 122, 63–68 (2002). https://doi.org/10.1016/S0924-0136(01)01121-9

    Article  Google Scholar 

  8. Slámečka, K.; Jech, D.; Klakurková, L.; Tkachenko, S.; Remešová, M.; Gejdoš, P.; Čelko, L.: Thermal cycling damage in pre-oxidized plasma-sprayed MCrAlY + YSZ thermal barrier coatings: Phenomenon of multiple parallel delamination of the TGO layer. Surf. Coatings Technol. 384, 125328 (2020). https://doi.org/10.1016/j.surfcoat.2019.125328

    Article  Google Scholar 

  9. Thawari, N.; Gullipalli, C.; Katiyar, J.K.; Gupta, T.V.K.: Influence of buffer layer on surface and tribomechanical properties of laser cladded Stellite 6. Mater. Sci. Eng. B 263, 114799 (2021). https://doi.org/10.1016/j.mseb.2020.114799

    Article  Google Scholar 

  10. Ahmed, N.: Direct metal fabrication in rapid prototyping: A review. J. Manuf. Process. 42, 167–191 (2019). https://doi.org/10.1016/j.jmapro.2019.05.001

    Article  Google Scholar 

  11. Thawari, N.; Gullipalli, C.; Chandak, A.; Gupta, T.V.K.: Influence of laser cladding parameters on distortion, thermal history and melt pool behaviour in multi-layer deposition of stellite 6: in-situ measurement. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.157894

    Article  Google Scholar 

  12. Caiazzo, F.: Laser-aided Directed Metal Deposition of Ni-based superalloy powder. Opt. Laser Technol. 103, 193–198 (2018). https://doi.org/10.1016/j.optlastec.2018.01.042

    Article  Google Scholar 

  13. Zhu, L.; Xue, P.; Lan, Q.; Meng, G.; Ren, Y.; Yang, Z.; Xu, P.; Liu, Z.: Recent research and development status of laser cladding: a review. Opt. Laser Technol. 138, 106915 (2021). https://doi.org/10.1016/j.optlastec.2021.106915

    Article  Google Scholar 

  14. Tepylo, N.; Huang, X.; Patnaik, P.C.: Laser-based additive manufacturing technologies for aerospace applications. Adv. Eng. Mater. 21, 1–35 (2019). https://doi.org/10.1002/adem.201900617

    Article  Google Scholar 

  15. Gibson, I.; Rosen, D.; Stucker, B.: Directed energy deposition processes. Additive manufacturing technologies. Springer, New York (2015)

    Book  Google Scholar 

  16. Sibisi, P.N.; Popoola, A.P.I.; Arthur, N.K.K.; Pityana, S.L.: Review on direct metal laser deposition manufacturing technology for the Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 107, 1163–1178 (2020). https://doi.org/10.1007/s00170-019-04851-3

    Article  Google Scholar 

  17. Stevens, E.L.; Toman, J.; To, A.C.; Chmielus, M.: Variation of hardness, microstructure, and Laves phase distribution in direct laser deposited alloy 718 cuboids. Mater. Des. 119, 188–198 (2017). https://doi.org/10.1016/j.matdes.2017.01.031

    Article  Google Scholar 

  18. Zhu, L.; Xu, Z.F.; Gu, Y.F.: Microstructural evolution of laser solid forming Inconel 718 superalloy under different laser power. Mater. Lett. 217, 159–162 (2018). https://doi.org/10.1016/j.matlet.2018.01.099

    Article  Google Scholar 

  19. Ma, M.; Wang, Z.; Zeng, X.: Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Mater. Charact. 106, 420–427 (2015). https://doi.org/10.1016/j.matchar.2015.06.027

    Article  Google Scholar 

  20. Chen, Y.; Guo, Y.; Xu, M.; Ma, C.; Zhang, Q.; Wang, L.; Yao, J.; Li, Z.: Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and gaussian distribution laser. Mater. Sci. Eng. A. 754, 339–347 (2019). https://doi.org/10.1016/j.msea.2019.03.096

    Article  Google Scholar 

  21. Xiao, H.; Li, S.; Han, X.; Mazumder, J.; Song, L.: Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing. Mater. Des. 122, 330–339 (2017). https://doi.org/10.1016/j.matdes.2017.03.004

    Article  Google Scholar 

  22. Xiao, H.; Li, S.M.; Xiao, W.J.; Li, Y.Q.; Cha, L.M.; Mazumder, J.; Song, L.J.: Effects of laser modes on Nb segregation and Laves phase formation during laser additive manufacturing of nickel-based superalloy. Mater. Lett. 188, 260–262 (2017). https://doi.org/10.1016/j.matlet.2016.10.118

    Article  Google Scholar 

  23. Zhang, Y.; Li, Z.; Nie, P.; Wu, Y.: Effect of cooling rate on the microstructure of laser-remelted INCONEL 718 coating. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 5513–5521 (2013). https://doi.org/10.1007/s11661-013-1903-8

    Article  Google Scholar 

  24. Zhang, Y.C.; Li, Z.G.; Nie, P.L.; Wu, Y.X.: Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf. Eng. 29, 414–418 (2013). https://doi.org/10.1179/1743294413Y.0000000142

    Article  Google Scholar 

  25. Brandl, E.; Michailov, V.; Viehweger, B.; Leyens, C.: Deposition of Ti-6Al-4V using laser and wire, part I: Microstructural properties of single beads. Surf. Coatings Technol. 206, 1120–1129 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.095

    Article  Google Scholar 

  26. Muvvala, G.; Patra Karmakar, D.; Nath, A.K.: Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy. Opt. Lasers Eng. 88, 139–152 (2017). https://doi.org/10.1016/j.optlaseng.2016.08.005

    Article  Google Scholar 

  27. Kou, S.: Welding metallurgy, 2nd edn. John Wiley & Sons Inc, Hoboken, NJ, USA (2003)

    Google Scholar 

  28. Yan, F.; Xiong, W.; Faierson, E.J.: Grain structure control of additively manufactured metallic materials. Mater. Basel 10, 1260 (2017). https://doi.org/10.3390/ma10111260

    Article  Google Scholar 

  29. Liang, Y.J.; Li, J.; Li, A.; Cheng, X.; Wang, S.; Wang, H.M.: Experimental optimization of laser additive manufacturing process of single-crystal nickel-base superalloys by a statistical experiment design method. J. Alloys Compd. 697, 174–181 (2017). https://doi.org/10.1016/j.jallcom.2016.12.109

    Article  Google Scholar 

  30. Chen, J.; Xue, L.: Laser cladding of CPM tool steels on hardened H13 hot-work steel for low-cost high-performance automotive tooling. Jom. 64, 688–693 (2012). https://doi.org/10.1007/s11837-012-0332-2

    Article  Google Scholar 

  31. Song, L.; Bagavath-Singh, V.; Dutta, B.; Mazumder, J.: Control of melt pool temperature and deposition height during direct metal deposition process. Int. J. Adv. Manuf. Technol. 58, 247–256 (2012). https://doi.org/10.1007/s00170-011-3395-2

    Article  Google Scholar 

  32. Manikandan, S.G.K.; Sivakumar, D.; Prasad Rao, K.; Kamaraj, M.: Laves phase in alloy 718 fusion zone—Microscopic and calorimetric studies. Mater. Charact. 100, 192–206 (2015). https://doi.org/10.1016/j.matchar.2014.11.035

    Article  Google Scholar 

  33. Ferreri, N.C.; Vogel, S.C.; Knezevic, M.: Determining volume fractions of γ, γ′, γ″, δ, and MC-carbide phases in Inconel 718 as a function of its processing history using an advanced neutron diffraction procedure. Mater. Sci. Eng. A. 781, 139228 (2020). https://doi.org/10.1016/j.msea.2020.139228

    Article  Google Scholar 

  34. Gowri, S.; Samuel, F.H.: Effect of cooling rate on the solidification. Metall. Trans. A. 23, 3369–3376 (1992). https://doi.org/10.1007/bf03024544

    Article  Google Scholar 

Download references

Acknowledgements

The research is financially supported by the Department of Science and Technology (DST), Govt. of India; Project No. DST/TDT/AMT/2017115(G). The authors express sincere thanks to M/s Shreenath Engineering Industries, Nagpur for allowing us to use their laser cladding facility for experimentation.

Author information

Authors and Affiliations

Authors

Contributions

TVKG contributed to conceptualization, reviewing and editing, supervision. CG was involved in experimentation, investigations, analysis, paper writing. PB contributed to microstructure data acquisition, mechanical testing. NT was involved in editing, graphs, plotting. JB contributed to analysis, reviewing.

Corresponding author

Correspondence to T. V. K. Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gullipalli, C., Burad, P., Thawari, N. et al. Microstructure Evolution in Direct Energy Deposited Multilayer Inconel 718. Arab J Sci Eng 47, 7985–7994 (2022). https://doi.org/10.1007/s13369-021-05899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05899-8

Keywords

Navigation