Skip to main content
Log in

Enhanced Model-Free Discrete-Time Adaptive Terminal Sliding-Mode Control for SOFC Power Plant with Input Constraints

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

As a kind of fuel cells, solid oxide fuel cell (SOFC) has been an important research area for researchers. However, SOFC gives a challenging control problem because of their operating constraints, complex nonlinearity, slow dynamics, and load disturbance. In this article, a new enhanced model-free discrete-time adaptive terminal sliding-mode control (EMF-ATSMC) is proposed for the SOFC system with input constraints, aiming to regulate the output voltage under the load disturbance. The referred EMF-ATSMC controller is composed of three components: the pseudo-partial-derivative (PPD) estimator, the discrete-time adaptive terminal sliding-mode control, and the anti-windup compensator. First, an enhanced compact form of dynamic linearization data-driven modelling method is used to simplify the SOFC plant considering the load perturbation, and then, the PPD estimator is designed. The discrete-time adaptive terminal sliding-mode control via anti-windup compensator is developed to improve the control performance and guarantee the controlled system stability, wherein the designed anti-windup compensator is employed to eliminate the magnitude and rate saturations of control input. Moreover, the closed-loop system’s stability with the proposed EMF-ATSMC controller is theoretically proved by using the Lyapunov method. Finally, simulation results are given to demonstrate that the proposed EMF-ATSMC controller has excellent dynamic performance and stronger robustness compared with other methods such as improved model-free adaptive constrained control (IMFACC), model-free adaptive control (MFAC), and PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wu, Y.; Huangfu, Y.; Ma, R.; Ravey, A.; Chrenko, D.: A strong robust DC-DC converter of all-digital high-order sliding mode control for fuel cell power applications. J. Power Sour. 413, 222–232 (2019)

    Google Scholar 

  2. Zhang, T.; Feng, G.: Rapid load following of an SOFC power system via stable fuzzy predictive tracking controller. IEEE Trans. Fuzzy Syst. 17(2), 357–371 (2008)

    Google Scholar 

  3. Suther, T.; Fung, A.; Koksal, M.; Zabihian, F.: Macro level modeling of a tubular solid oxide fuel cell. Sustainability 2(11), 3549–3560 (2010)

    Google Scholar 

  4. Sangtongkitcharoen, W.; Vivanpatarakij, S.; Laosiripojana, N.; Arpornwichanop, A.; Assabumrungrat, S.: Performance analysis of methanol-fueled solid oxide fuel cell system incorporated with palladium membrane reactor. Chem. Eng. J. 138(1–3), 436–441 (2008)

    Google Scholar 

  5. Xu, D.; Jiang, B.; Liu, F.: Improved data driven model free adaptive constrained control for a solid oxide fuel cell. IET Control Theory Appl. 10(12), 1412–1419 (2016)

    MathSciNet  Google Scholar 

  6. Nayeripour, M.; Hoseintabar, M.: A new control strategy of solid oxide fuel cell based on coordination between hydrogen fuel flow rate and utilization factor. Renew. Sustain. Energy Rev. 27, 505–514 (2013)

    Google Scholar 

  7. Vrečko, D.; Dolanc, G.; Dolenc, B.; Vrančić, D.; Pregelj, B.; Marra, D.; Marra, D.; SorrentIino, M.; Pianese, C.; Pohjoranta, A.: Juričić: feedforward-feedback control of a SOFC power system: a simulation study. ECS Trans. 68(1), 3151 (2015)

    Google Scholar 

  8. Abbaker, A.O.; Wang, H.P.; Tian, Y.: Voltage control of solid oxide fuel cell power plant based on intelligent proportional integral-adaptive sliding mode control with anti-windup compensator. Trans. Inst. Measur. Control 42(1), 116–130 (2020)

    Google Scholar 

  9. Li, Y.; Shen, J.; Lu, J.: Constrained model predictive control of a solid oxide fuel cell based on genetic optimization. J. Power Sour. 196(14), 5873–5880 (2011)

    Google Scholar 

  10. Wu, X.J.; Zhu, X.J.; Cao, G.Y.; Tu, H.Y.: Predictive control of SOFC based on a GA-RBF neural network model. J. Power Sour. 179(1), 232–239 (2008)

    Google Scholar 

  11. Jurado, F.: Predictive control of solid oxide fuel cells using fuzzy Hammerstein models. J. Power Sour. 158(1), 245–253 (2006)

    Google Scholar 

  12. Sun, L.; Hua, Q.; Shen, J.; Xue, Y.; Li, D.; Lee, K.Y.: A combined voltage control strategy for fuel cell. Sustainability 9(9), 1517 (2017)

    Google Scholar 

  13. Qin, Y.; Sun, L.; Hua, Q.; Liu, P.: A fuzzy adaptive PID controller design for fuel cell power plant. Sustainability 10(7), 2438 (2018)

    Google Scholar 

  14. Triwiyatno, A.; Kurniahadi, A.: Designing hydrogen and oxygen flow rate control on a solid oxide fuel cell simulator using the Fuzzy logic control method. Processes 8(2), 154 (2020)

    Google Scholar 

  15. Yan, J.J.; Liao, T.L.: Discrete sliding mode control for hybrid synchronization of continuous Lorenz systems with matched/unmatched disturbances. Tran. Inst. Measur. Control 40(5), 1417–1424 (2018)

    Google Scholar 

  16. Ji, N.; Xu, D.; Liu, F.: A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup. Neurocomputing 214, 134–142 (2016)

    Google Scholar 

  17. Liu, D.; Yang, G.H.: Performance-based data-driven model-free adaptive sliding mode control for a class of discrete-time nonlinear processes. J. Process Control 68, 186–194 (2018)

    Google Scholar 

  18. Feng, J.; Cao, L.; Ma, L.; Zhao, D.; Spurgeon, S.K.: Model-free adaptive sliding mode control for continuous stirred tank reactor, In 37th Chinese Control Conference (CCC). Wuhan, China, IEEE 2018, 3035–3040 (2018)

  19. Abbaker, A.M.O.; Wang, H.P.; Tian, Y.: Adaptive integral type-terminal sliding mode control for PEMFC air supply system using time delay estimation algorithm. Asian J. control (2020). https://doi.org/10.1002/asjc.2451

    Article  Google Scholar 

  20. Paul, S.; Yu, W.; Li, X.: Discrete-time sliding mode for building structure bidirectional active vibration control. Trans. Inst. Measur. Control 41(2), 433–446 (2019)

    Google Scholar 

  21. Martinez, D.I.; De-Rubio, J.J.; Vargas, T.M.; Garcia, V.; Ochoa, G.; Balcazar, R.; Cruz, D.R.; Aguilar, A.; Novoa, J.F.; Aguilar-Ibanez, C.: Stabilization of robots with a regulator containing the sigmoid mapping. IEEE Access. 8, 89479–89488 (2020)

    Google Scholar 

  22. Rubio, J.D.J.; Ochoa, G.; Mujica-Vargas, D.; Garcia, E.; Balcazar, R.; Elias, I.; Cruz, D.R.; Juarez, C.F.; Aguilar, A.; Novoa, J.F.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access. 7, 138244–138252 (2019)

    Google Scholar 

  23. Escobedo-Alva, J.O.; Garcia-Estrada, E.C.; Paramo-Carranza, L.A.; Meda-Campana, J.A.; Tapia-Herrera, R.: Theoretical application of a hybrid observer on altitude tracking of quadrotor losing GPS signal. IEEE Access. 6, 76900–76908 (2018)

    Google Scholar 

  24. Martinez, D.I.; Rubio, J.D.J.; Aguilar, A.; Pacheco, J.; Gutierrez, G.J.; Garcia, V.; Vargas, T.M.; Ochoa, G.; Cruz, D.R.; Juarez, C.F.: Stabilization of two electricity generators. Complexity 2020, 1–13 (2020)

    Google Scholar 

  25. Aguilar-Ibanez, C.; Suarez-Castanon, M.S.: A trajectory planning based controller to regulate an uncertain 3D overhead crane system. Int. J. Appl. Math. Comput. Sci. 29(4), 693–702 (2019)

    MathSciNet  MATH  Google Scholar 

  26. García-Sánchez, J.R.; Tavera-Mosqueda, S.; Silva-Ortigoza, R.; Hernández-Guzmán, V.M.; Sandoval-Gutiérrez, J.; Marcelino-Aranda, M.; Taud, H.; Marciano-Melchor, M.: Robust switched tracking control for wheeled mobile robots considering the actuators and drivers. Sensors 18(12), 4316 (2018)

    Google Scholar 

  27. Zhang, B.; Cao, R.; Hou, Z.: The model-free adaptive cross-coupled control for two-dimensional linear motor. Trans. Inst. Measur. Control 42(5), 1059–1069 (2020)

    Google Scholar 

  28. Bu, X.; Hou, Z.; Zhang, H.: Data-driven multiagent systems consensus tracking using model free adaptive control. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1514–1524 (2017)

    MathSciNet  Google Scholar 

  29. Xu, D.; Jiang, B.; Shi, P.: Adaptive observer based data-driven control for nonlinear discrete-time processes. IEEE Trans. Autom.n Sci. Eng. 11(4), 1549–1558 (2014)

    Google Scholar 

  30. Ma, H.; Wu, J.; Xiong, Z.: Discrete-time sliding-mode control with improved quasi-sliding-mode domain. IEEE Trans. Ind. Electron. 63(10), 6292–6304 (2016)

    Google Scholar 

  31. Hou, Z.; Jin, S.: A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Trans. Control Syst. Technol. 19(6), 1549–1558 (2011)

    Google Scholar 

  32. Hou, Z.; Bu, X.: Model free adaptive control with data dropouts. Exp. Syst. Appl. 38(8), 10709–10717 (2011)

    Google Scholar 

  33. Bu, X.; Hou, Z.; Yu, F.; Wang, F.: Robust model free adaptive control with measurement disturbance. IET Control Theory Appl. 6(9), 1288–1296 (2012)

    MathSciNet  Google Scholar 

  34. Mustafa, G.I.; Wang, H.P.; Tian, Y.: Model-free adaptive fuzzy logic control for a half-car active suspension system. Stud. Inform. Control. 28(1), 13–24 (2019)

    Google Scholar 

  35. Hou, Z., Jin, S.: Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Transactions on Neural Networks 22(12), pp. 2173–2188 (011).

  36. Abbaker, A.M.O.; Wang, H.P.; Tian, Y.: Robust model-free adaptive interval type-2 fuzzy sliding mode control for PEMFC system using disturbance observer. Int. J. Fuzzy Syst. 22, 2188–2203 (2020)

  37. Hou, Z.S.: The Parameter Identification, Adaptive Control and Model Free Learning Adaptive Control for Nonlinear Systems, (Ph.D. dissertation), Northeastern University, Shengyang, China, (1994).

  38. Hou, Z.; Zhu, Y.: Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems. IEEE Trans. Ind. Inform. 9(4), 2301–2309 (2013)

    Google Scholar 

  39. Cao, R.M.; Hou, Z.S.: Model-free learning adaptive control of a PH neutralization process. Comput. Eng. Appl. 42(28), 191–194 (2006)

    Google Scholar 

  40. Chi, R.H.; Hou, Z.S.: A model-free periodic adaptive control for freeway traffic density via ramp metering. Acta Automatica Sinica. 36(7), 1029–1032 (2010)

    MathSciNet  Google Scholar 

  41. Luo, Y.; Hu, Y.; Jiang, F.; Chen, R.; Wang, Y.: Active fault-tolerant control based on multiple input multiple output-model free adaptive control for four wheel independently driven electric vehicle drive system. Appl. Sci. 9(2), 276 (2019)

    Google Scholar 

  42. Bai, L.; Feng, Y.W.; Li, N.; Xue, X.F.: Robust model-free adaptive iterative learning control for vibration suppression based on evidential reasoning. Micromachines 10(3), 196 (2019)

    Google Scholar 

  43. Lv, F.L.; Chen, H.B.; Fan, C.J.; Chen, S.B.: Application of model-free adaptive control to impulse TIG welding. J. Shanghai Jiaotong Univ. 43(1), 62–70 (2009)

    Google Scholar 

  44. Hou, Z.; Xiong, S.: On model-free adaptive control and its stability analysis. IEEE Trans. Autom. Control 64(11), 4555–4569 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Wang, W.; Hou, Z.: New adaptive quasi-sliding mode control for nonlinear discrete time systems. J. Syst. Eng. Electron. 19(1), 154–160 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Xu, D.; Shi, Y.; Ji, Z.: Model-free adaptive discrete-time integral sliding-mode-constrained-control for autonomous 4WMV parking systems. IEEE Trans. Ind. Electron. 65(1), 834–843 (2017)

    Google Scholar 

  47. Weng, Y.; Gao, X.: Adaptive sliding mode decoupling control with data-driven sliding surface for unknown MIMO nonlinear discrete systems. Circuits Syst. Signal Process. 36(3), 969–997 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Hou, Z.; Wang, W.; Jin, S.: Adaptive quasi-sliding-mode control for a class of nonlinear discrete-time systems. Control Theor. Appl. 26(5), 505–509 (2009)

    MATH  Google Scholar 

  49. Gao, W.; Homaifa, Y.; Wang, A.: discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 42(2), 117–122 (1995)

    Google Scholar 

  50. Wang, X.; Li, X.; Wang, J.; Fang, X.; Zhu, X.: Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton. Inform. Sci. 327, 246–257 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Spurgeon, S.K.: Hyperplane design techniques for discrete-time variable structure control systems. Int. J. Control 55(2), 445–456 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K.: Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015)

  53. Benko, D.; Biles, D.C.; Robinson, M.P.; Spraker, J.S.: Numerical approximation for singular second order differential equations. Math. Comput. Modell. 49(5–6), 1109–1114 (2009)

    MathSciNet  MATH  Google Scholar 

  54. Khalil, H.K.; Grizzle, J.W.: Nonlinear systems. Upper Saddle River. Prentice hall, NJ (2002)

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61773212) and by International Science and Technology Cooperation Program of China (2015DFA01710)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AM, O.A., Wang, H. & Tian, Y. Enhanced Model-Free Discrete-Time Adaptive Terminal Sliding-Mode Control for SOFC Power Plant with Input Constraints. Arab J Sci Eng 47, 2851–2864 (2022). https://doi.org/10.1007/s13369-021-05835-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05835-w

Keywords

Navigation