Skip to main content
Log in

Analysis of the Structures, Electronic, and Spectroscopic Properties of Piperidine-Based Analgesic Drugs Carfentanil and Acetylfentanyl

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The geometrical molecular structures, atomic charges, frontier molecular orbitals, and UV–visible electronic data of analgesic drugs carfentanil and acetylfentanyl were computed using quantum chemical code. In addition, NMR (1H and 13C) chemical shifts, harmonic vibrational wavenumbers, and the corresponding vibrational assignments were proposed on the basis of potential energy distribution. The calculations were carried out at Becke-3-Lee–Yang–Parr (B3LYP) functional with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using the 6–311 +  + G(d,p) basis set. The piperidine rings of the two molecules adopt a more stable chair conformation of a six-membered ring structure with slight distortion at the point of substitution. This shows that the piperidine moiety of the carfentanil and acetylfentanyl have similar geometric parameters and thus support the hypothesis that the piperidine ring in these molecules is the primary structural feature that is responsible for their analgesic activities. In addition, the introduction of the carbomethoxy (-COCH3) group into the piperidine ring of fentanyl has little or no effect on the electronic properties of this class of molecules. The theoretical results were successfully compared with similar piperidine-based analgesic drugs fentanyl and available experimental data. This research gives precise and invaluable information that will help in the structural elucidation of analogs of fentanyl that could be used in the development of analytical methods for the accurate and reliable detection and monitoring of these important molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dai, Z.; Abate, M.A.; Smith, G.S.; Kraner, J.C.; Mock, A.R.: Fentanyl and fentanyl-analog involvement in drug-related deaths. Drug Alcohol Depend 196, 1–8 (2019)

    Article  Google Scholar 

  2. Daniulaityte, R.; Juhascik, M.P.; Strayer, K.E.; Sizemore, I.E.; Zatreh, M.; Nahhas, R.W.; Harshbarger, K.E.; Antonides, H.M.; Martins, S.S.; Carlson, R.G.: Trends in fentanyl and fentanyl analogue-related overdose deaths Montgomery County, Ohio, 2015–2017. Drug Alcohol Depend 198, 116–120 (2019)

    Article  Google Scholar 

  3. Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L.: Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. Neuropharmacology 134, 121–132 (2018)

    Article  Google Scholar 

  4. Suzukia, J.; El-Haddad, S.: A review: fentanyl and non-pharmaceutical fentanyls. Drug Alcohol Depend 171, 107–116 (2017)

    Article  Google Scholar 

  5. Raffa, R.B.; Pergolizzi, J.V., Jr.; LeQuang, J.A.; Taylor, R., Jr.; Colucci, S.; Annabi, M.H.: The fentanyl family: a distinguished medical history tainted by abuse. J Clin Pharm Ther. 43, 154–158 (2018)

    Article  Google Scholar 

  6. Cole, J.B.; Nelson, L.S.: Controversies and carfentanil: we have much to learn about the present state of opioid poisoning. Am. J. Emerg. Med. 35, 1743–1745 (2017)

    Article  Google Scholar 

  7. Swanson, D.M.; Hair, L.S.; Strauch Rivers, S.R.; Smyth, B.C.; Brogan, S.C.; Ventoso, A.D.; Vaccaro, S.L.; Pearson, J.M.: Fatalities involving carfentanil and furanyl fentanyl two case reports. J. Anal. Toxicol. 41, 498–502 (2017)

    Article  Google Scholar 

  8. Lozier, M.J.; Boyd, M.; Stanley, C., et al.: Acetyl fentanyl, a novel fentanyl analog, causes 14 overdose deaths in Rhode Island, March-May 2013. J Med Toxicol 11(2), 208–217 (2015)

    Article  Google Scholar 

  9. Stanley, T.H.: The fentanyl story. J. Pain 15(12), 1215–1226 (2014)

    Article  Google Scholar 

  10. Riches, J.R.; Read, R.W.; Black, R.M.; Cooper, N.J.; Timperley, C.M.: Analysis of clothing and urine from moscow theatre siege casualties reveals carfentanil and remifentanil use. J. Anal. Toxicol. 36, 647–656 (2012)

    Article  Google Scholar 

  11. Wax, P.M.; Becker, C.E.; Curry, S.C.: Unexpected “gas” casualties in Moscow: a medical toxicology perspective. Ann. Emerg. Med. 41, 700–705 (2003)

    Article  Google Scholar 

  12. Sisco, E.; Verkouteren, J.; Staymates, J.; Lawrence, J.: Rapid detection of fentanyl, fentanyl analogues, and opioids for on-site or laboratory based drug seizure screening using thermal desorption DART-MS and ion mobility spectrometry. Forensic Chem. 4, 108–115 (2017)

    Article  Google Scholar 

  13. Leonard, J.; Haddad, A.; Green, O.; Birke, R.L.; Kubic, T.; Kocak, A.; Lombardi, J.R.: SERS Raman and DFT analyses of fentanyl and carfentanil toward detection of trace samples. J. Raman Spectrosc. 48, 1323–1329 (2017)

    Article  Google Scholar 

  14. Mohr, A.L.; Friscia, M.; Papsun, D.; Kacinko, S.L.; Buzby, D.; Logan, B.K.: Analysis of novel synthetic opioids U-47700, U-50488 and furanyl fentanyl by LC-MS/MS in postmortem casework. J Anal Toxicol. 40(9), 709–717 (2016)

    Google Scholar 

  15. Shanks, K.G.; Behonick, G.S.: Detection of carfentanil by LC–MS-MS and reports of associated fatalities in the USA. J. Anal. Toxicol. 41, 466–472 (2017)

    Article  Google Scholar 

  16. Sofalvi, S.; Schueler, H.E.; Lavins, E.S.; Kaspar, C.K.; Brooker, I.T.; Mazzola, C.D.; Dolinak, D.; Gilson, T.P.; Perch, S.: An LC–MS-MS method for the analysis of Carfentanil, 3-Methylfentanyl, 2-Furanyl Fentanyl, Acetyl Fentanyl, Fentanyl and Norfentanyl in postmortem and impaired-driving cases. J. Anal. Toxicol. 41, 473–483 (2017)

    Article  Google Scholar 

  17. Duffy, J.; Urbasb, A.; Niemitz, M.; Lippa, K.; Marginean, I.: Differentiation of fentanyl analogues by low-field NMR spectroscopy. Analytica Chimica Acta. 1049, 161–169 (2019)

    Article  Google Scholar 

  18. Lipiński, P.F.J.; Jarończyk, M.; Ostrowski, S.; DobrowolskiSadlej, JCz.J.: Conformation of six fentanyls revisited. Comput. Theor. Chem. 1086, 18–24 (2016)

    Article  Google Scholar 

  19. Asadi, Z.; Esrafili, M.D.; Vessally, E.; Asnaashariisfahani, M.; Yahyaei, S.; Khani, Ali: A structural study of fentanyl by DFT calculations, NMR and IR Spectroscopy. J. Mol. Struct. 1128, 552–562 (2017)

    Article  Google Scholar 

  20. Umar, Y.; Abdulla, S.; Manirul Haque, S.K.; Moran, G.S.; Villada, W.C.; Dagnino-Leone, J.; Bunster, M.: Theoretical Investigation of the molecular structure vibrational spectra and molecular docking of tramadol using density functional theory. J. Chin. Chem. Soc. 67, 62–73 (2020)

    Article  Google Scholar 

  21. Umar, Y.; Morsy, M.A.: Ab initio and DFT studies of the molecular structures and vibrational spectra of succinonitrile. Spectrochim. Acta A 66(4–5), 1133–1140 (2007)

    Article  Google Scholar 

  22. Umar, Y.; Tijani, J.; Abdalla, S.: Conformational stabilities, rotational barriers and vibrational spectra of 2- Pyrrolecarboxaldehydes and 3-Pyrrolecarboxaldehydes calculated using density functional theory. J. Struct. Chem. 60(2), 186–197 (2019)

    Article  Google Scholar 

  23. Umar, Y.; Abdalla, S.: DFT study of the molecular structure, conformational preference, HOMO, LUMO, and vibrational analysis of 2-, and 3- Furoyl Chloride. J. Solut. Chem. 4, 741–758 (2017)

    Article  Google Scholar 

  24. Umar, Y.; Tijani, J.; Abdalla, S.: Density functional theory studies of conformational stabilities and rotational barriers of Thiophenecarboxaldehydes. J. Struct. Chem. 57(8), 1543–1553 (2016)

    Article  Google Scholar 

  25. Yeoh, P.H.; Lim, K.Z.; Tan, E.L.; Rhyman, L.; Umar, Y.; Abdallah, H.H.; Ramasami, P.: Internal Rotation of 2-, 3- and 4- pyridine carboxaldehydes and their chalcogen analogues (S and Se) in the gas and solution phases: a theoretical investigation. J. Solut. Chem. 45(8), 1195–1212 (2016)

    Article  Google Scholar 

  26. Abdalla, S., Umar, Y., Mokhtar, I.: Conformational and vibrational analysis of Pyridinecarbonyl chloride using DFT. Zeitschrift für Physikalische Chemie. 230(5–7): 867–882 (2016)

  27. Dennington, R., II.; Keith, T.; Millam, J., et al.: GaussView Version 3.09. Version 3.09, KS (2003)

    Google Scholar 

  28. Becke, A.D.: Density-functional thermochemistry III the role of exact exchange. J. Chem. Phys. 98, 5648–5653 (1993)

    Article  Google Scholar 

  29. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  30. Gaussian 09, Revision A.02.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J.: Gaussian, Inc., Wallingford CT (2016)

  31. Jamroz, M.H.: Vibrational energy distribution analysis VEDA 4, Warsaw,  2004–2010

  32. Khajehzadeh, M.; Moghadam, M.: Molecular structure, FT IR, NMR, UV, NBO and HOMO–LUMO of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile by DFT/B3LYP and PBEPBE methods with LanL2DZ and 6–311++G(d,2p) basis sets. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 180, 51–66 (2017)

    Article  Google Scholar 

  33. Umar, Y.; Abu-Thabit, N.; Ramasami, P.: J. Theor. Comp. Chem. 18(2), 1950009 (2019)

    Article  Google Scholar 

  34. Arulraj, R.; Sivakumar, S.; Suresh, S.; Anitha, K.: Synthesis, vibrational spectra, DFT calculations, Hirshfeld surface analysis and molecular docking study of 3-chloro-3-methyl-2,6-diphenylpiperidin-4-one. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 232, 118166 (2020)

    Article  Google Scholar 

  35. Casale, J.F.; Mallette, J.R.; Guest, E.M.: Analysis of illicit carfentanil: emergence of the death dragon. Forensic Chem. 3, 74–80 (2017)

    Article  Google Scholar 

  36. Jeffrey, P.M.; Damian, M.; Leo, R.: An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 111, 11683–11700 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Mohammed Awwal Saidu of Jubail English Language Institute for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunusa Umar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, Y. Analysis of the Structures, Electronic, and Spectroscopic Properties of Piperidine-Based Analgesic Drugs Carfentanil and Acetylfentanyl. Arab J Sci Eng 47, 511–522 (2022). https://doi.org/10.1007/s13369-021-05791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05791-5

Keywords

Navigation