Skip to main content
Log in

The Utilization of a Statistical Program for Chemical Oxygen Demand Reduction and Diclofenac Sodium Removal from Aqueous Solutions via Agaricus campestris/Amberlite Styrene Divinylbenzene Biocomposite

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In our study, medium conditions were optimized for percent chemical oxygen demand (COD) reduction and drug removal from diclofenac sodium (DFS) solutions. Response surface methodology/central composite design was used for optimization. A. Campestris/Amberlite Styrene–divinylbenzene (XAD-4) biocomposite material was used as adsorbent. Four independent parameters (pH, initial concentration, interaction time and adsorbent amount) were chosen to optimize both % COD reduction and DFS removal. As a result of experiments, maximum 77% COD reduction and maximum 98% DFS removal were obtained at 4 pH, 225 mg/L initial concentration, 36 min and 0.69 adsorbent amount. Scanning electron microscope and Fourier transform infrared spectroscopy devices were used for characterization of adsorbent material. To identify the isotherm for the adsorption mechanism, the Langmuir, Freundlich, Temkin and Harkins–Jura isotherm equations were examined. The Freundlich isotherm had 96.2% regression coefficient (R2) and was linear, so had better fit compared to the other equations and the adsorption mechanism abided by the Freundlich isotherm. The results show that statistical optimization design was successfully applied to experiments and A. Campestris/Amberlite XAD-4 is an appropriate biocomposite adsorbent with specific affinity for % COD reduction and removal of DFS from aqueous solutions under optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Kang, J.; Price, W.E.: Removal and fate of micropollutants in a sponge-based moving bed bioreactor. Biol. Technol. 159, 311–319 (2014)

    Google Scholar 

  2. Domaradzka, D.; Guzik, U.; Wojcieszyńska, D.: Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs. Rev. Environ. Sci. Bio/Technol. 14, 229–239 (2015)

    Google Scholar 

  3. Joss, A.; Zabczynski, S.; Göbel, A.; Hoffmann, B.; Löffler, D.; McArdell, C.S.; Ternes, T.A.; Thomsen, A.; Siegrist, H.: Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res. 40, 1686–1696 (2006)

    Google Scholar 

  4. Balcı, B.; Erkuş, A.; Erkuş, F.Ş: Farmasötik bileşiklerin sucul ortamda bulunuşu ve etkileri. Res. J. Biol. Sci. 3, 13–19 (2010)

    Google Scholar 

  5. Alvarino, T.; Suarez, S.; Lema, J.M.; Omil, F.: Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. J. Hazard. Mater. 278, 506–513 (2014)

    Google Scholar 

  6. Daneshvar, A.; Svanfelt, J.; Kronberg, L.; Weyhenmeyer, G.A.: Winter accumulation of acidic pharmaceuticals in a Swedish river. Environ. Sci. Pollut. Res. 17, 908–916 (2010)

    Google Scholar 

  7. Sharma, H.R.; Trivedi, R.C.; Akolkar, P.; Gupta, A.: Micropollutants levels in macroinvertebrates collected from drinking water sources of Delhi, India. Int. J. Environ. Stud. 60(2), 99–110 (2003)

    Google Scholar 

  8. Barbieri, M.; Carrera, J.; Ayora, C.; Sanchez-Vila, X.; Licha, T.; Nödler, K.; Osorio, V.; Peres, S.; Köck-Schulmeyer, M.; Lopez-deAlda, M.; Barcelo, D.: Formation of diclofenac and sulfamethoxazole reversible transformation products in aquifer material under denitrifying conditions: batch experiments. Sci. Total Environ. 426, 256–63 (2012)

    Google Scholar 

  9. Nas, B.; Dolu, T.; Ateş, H.; Argun, M.E.; Yel, E.: Treatment alternatives for micropollutant removal in wastewater. Selçuk Üniversitesi Mühendislik Fakültesi Dergisi 5(2), 133–143 (2017)

    Google Scholar 

  10. Caban, M.; Lis, E.; Kumirska, J.; Stepnowski, P.: Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS (SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 538, 402–411 (2015)

    Google Scholar 

  11. Maia, G.S.; de Andrade, J.R.; da Silva, M.G.C.; Vieira, M.G.A.: Adsorption of diclofenac sodium onto commercial organoclay: kinetic, equilibrium and thermodynamic study. Powder Technol. 345, 140–150 (2019)

    Google Scholar 

  12. Bhadra, B.N.; Seo, P.W.; Jhung, S.H.: Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem. Eng. J. 301, 27–34 (2016)

    Google Scholar 

  13. Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, A.; Jarosova, B.: EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 47(17), 6475–6487 (2013)

    Google Scholar 

  14. Chen, J.B.; Gao, H.W.; Zhang, Y.L.; Zhang, Y.; Zhou, X.F.; Lı, Ch.Q.; Gao, H.P.: Developmental toxicity of diclofenac and elucidation of gene regulation in zebrafish (Danio rerio). Sci. Rep. 4, 4841 (2014)

    Google Scholar 

  15. Memmert, U.; Peither, A.; Burri, R.; Weber, K.; Schmidt, T.; Sumpter, J.P.H.; A. : Diclofenac: new data on chronic Toxicity and bioconcentration in fish. Environ. Toxicol. Chem. 32(2), 442–452 (2013)

    Google Scholar 

  16. Yerüstü Su Kalitesi Yönetmeliği (YSKY) RG Tarihi:10.8.2016, R.G. Sayısı:29797 Çevre ve Şehircilik Bakanlığı, Ankara

  17. Kim, I.; Tanaka, H.: Photodegradation characteristics of PPCPs in water with UV treatment. Environ. Int. 35(5), 793–802 (2009)

    Google Scholar 

  18. Erkuş, A.; Başıbüyük, M.; Erkuş, F.Ş: The examination of paracetamol and diclofenac removal in activated sludge systems under different operating conditions. Int. J. Ecosyst. Ecol. Sci. 5, 315–320 (2015)

    Google Scholar 

  19. Da Silva, T.H.; Furtado, R.X.D.S.; Zaiat, M.; Azevedo, E.B.: Tandem anaerobic-aerobic degradation of ranitidine, diclofenac, and simvastatin in domestic sewage. Sci. Total Environ. 721, 137589 (2020)

    Google Scholar 

  20. Suarez, S.; Lema, J.M.; Omil, F.: Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresour. Technol. 100(7), 2138–2146 (2009)

    Google Scholar 

  21. Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D.: Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42(14), 3601–3610 (2008)

    Google Scholar 

  22. Boyd, G.R.; Zhang, S.; Grimm, D.A.: Naproxen removal from water by chlorination and biofilm processes. Water Res. 39, 668–676 (2005)

    Google Scholar 

  23. Esplugas, S.; Bila, D.M.; Gustavo, L.; Krause, T.; Dezotti, M.: Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 149, 631–642 (2007)

    Google Scholar 

  24. Souza, F.S.; Da Silva, V.V.; Rosin, C.K.; Hainzenreder, L.; Arenzon, A.; Pizzolato, T.; Féris, L.A.: Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes. J. Environ. Sci. Health Part A 53(3), 213–221 (2018)

    Google Scholar 

  25. Vergili, I.: Application of nano filtration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J. Environ. Manag. 127, 177–187 (2013)

    Google Scholar 

  26. Alvarez, T.S.; Munoz, M.; Zazo, A.J.; Casas, A.J.; García, J.: Synthesis of high surface area carbon adsorbents prepared from pine sawdust-Onopordum acanthium L. for nonsteroidal anti-inflammatory drugs adsorption. J. Environ. Manag. 183, 294–305 (2016)

    Google Scholar 

  27. Franco, A.M.; De Carvalho, C.B.; De Bonetto, M.M.; Soares, R.D.P.; Féris, L.A.: Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modeling. J. Clean. Prod. 181, 145–154 (2018)

    Google Scholar 

  28. Bhatnagar, A.; Minocha, A.K.: Conventional and non-conventional adsorbents for removal of pollutants from water—a review. Indian J. Chem. Technol. 13, 203–217 (2006)

    Google Scholar 

  29. Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Wang, H.; Li, H.A.: facile band alignment of polymeric carbon nitride isotype heterojunctions for enhanced photocatalytic tetracycline degradation. Environ. Sci. Nano. 5(11), 2604–2617 (2018)

    Google Scholar 

  30. Vona, A.; Martino, F.; Garcia-Ivars, J.; Picó, Y.; Mendoza-Roca, J.A.; Iborra-Clar, M.I.: Comparison of different removal techniques for selected pharmaceuticals. J. Water Process Eng. 5, 48–57 (2015)

    Google Scholar 

  31. Ahmed, M.J.; Hameed, B.H.: Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: a review. Ecotoxicol. Environ. Saf. 149, 257–266 (2018)

    Google Scholar 

  32. Rad, L.R.; Irani, M.; Barzegar, R.: Adsorptive removal of acetaminophen and diclofenac using NaX nanozeolites synthesized by microwave method. Korean J. Chem. Eng. 32(8), 1606–1612 (2015)

    Google Scholar 

  33. Shirmardi, M.; Alavi, N.; Lima, E.C.; Takdastan, A.; Mahvi, A.H.; Babaei, A.A.: Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study. Process. Saf. Environ. Prot. 103, 23–35 (2016)

    Google Scholar 

  34. Suna, K.; Shia, Y.; Wang, X.; Li, Z.: Sorption and retention of diclofenac on zeolite in the presence of cationic surfactant. J. Hazard. Mater. 323, 584–592 (2017)

    Google Scholar 

  35. Jin, X.; Zheng, M.; Sarkar, B.; Naidu, R.; Chen, Z.: Characterization of bentonite modified with humic acid for the removal of Cu(II) and 2,4-dichlorophenol from aqueous solution. Appl. Clay. Sci. 134, 89–94 (2016)

    Google Scholar 

  36. Rakic, V.; Rajic, N.; Dakovic, A.; Auroux, A.: The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: clinoptilolite, bentonite and kaolin. Micropor. Mesopor. Mater. 166, 185–194 (2013)

    Google Scholar 

  37. Yendluri, R.; Otto, D.P.; De Villiers, M.M.; Vinokurov, V.; Lvov, Y.M.: Application of halloysite clay nanotubes as a pharmaceutical excipient. Int. J. Pharm. 521(1–2), 267–273 (2017)

    Google Scholar 

  38. Leng, L.; Yuan, X.; Zeng, G.; Shao, J.; Chen, X.; Wu, Z.; Peng, X.: Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155, 77–85 (2015)

    Google Scholar 

  39. Umar, M.S.; Jennings, P.; Urmee, T.: Sustainable electricity generation from oil palm biomass wastes in Malaysia: an industry survey. Energy 67, 496–505 (2014)

    Google Scholar 

  40. Ince, M.; Ince, O.K.; Yonten, V.; Karaaslan, N.M.: Nickel, lead, and cadmium removal using a low-cost adsorbent-banana peel. At. Spectrosc. 37(3), 125–130 (2016)

    Google Scholar 

  41. Portinho, R.; Zanella, O.; Feris, L.A.: Grape stalk application for caffeine removal through adsorption. J. Environ. Manag. 202, 178–187 (2017)

    Google Scholar 

  42. Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.: Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci. Total Environ. 532, 112–126 (2015)

    Google Scholar 

  43. Walcarius, A.; Mercier, L.: Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. 20, 4478–4511 (2010)

    Google Scholar 

  44. Delgado, L.F.; Charles, P.; Glucina, K.; Morlay, C.: The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—a review. Sci. Total Environ. 435, 509–525 (2012)

    Google Scholar 

  45. Hasan, Z.; Jhung, S.H.: Removal of hazardous organics from water using metalorganic frameworks (MOFs): plausible mechanisms for selective adsorptions. J. Hazard. Mater. 283, 329–339 (2015)

    Google Scholar 

  46. Manyangadze, M.; Chikuruwu, N.H.M.; Narsaiah, B.T.; Chakra, C.S.; Radhakumari, M.; Danha, G.: Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. S. Afr. J. Chem. Eng. 31, 25–32 (2020)

    Google Scholar 

  47. Zhao, W.; Chen, I.W.; Huang, F.: Toward large-scale water treatment using nanomaterials. Nano Today 27, 11–27 (2019)

    Google Scholar 

  48. Gengec, E.; Kobya, M.; Demirbas, E.; Akyol, A.; Oktor, K.: Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination 286, 200–209 (2012)

    Google Scholar 

  49. Myers, R.H.; Montgomery, D.C.: Response surface methodology: process and product optimization using designed experiments. Wiley, New York (1995)

    MATH  Google Scholar 

  50. Yonten, V.; Tanyol, M.; Yildirim, N.; Yildirim, N.C.; Ince, M.: Optimization of Remazol Brilliant Blue R dye removal by novel biosorbent P. eryngii immobilized on Amberlite XAD-4 using response surface methodology. Desalin. Water Treat. 57(33), 15592–15602 (2020)

    Google Scholar 

  51. Dharmadhikari, D.M.; Vanerkar, A.P.; Barhate, N.M.: Chemical oxygen demand using closed microwave digestion system. Environ. Sci. Technol. 39, 6198–6201 (2005)

    Google Scholar 

  52. Hiew, B.Y.Z.; Lee, L.Y.; Lai, K.C.; Gan, S.; Thangalazhy-Gopakumar, S.; Pan, G.T.; Yang, T.C.K.: Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ. Res. 168, 241–253 (2019)

    Google Scholar 

  53. Şimşek, Y.: Sulu Çözeltiden Bakır (II) Adsorpsiyon Sürecinin Optimizasyonunda Yüzey Yanıt Metodolojisinin Uygulanması. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 6(3), 182–191 (2018)

    Google Scholar 

  54. Brdjanovic, D.; van Loosdrecht, M.C.; Versteeg, P.; Hooijmans, C.M.; Alaerts, G.J.; Heijnen, J.J.: Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder. Water Res. 34, 846–858 (2000)

    Google Scholar 

  55. Yazdanbakhsh, A.R.; Mohammadi, A.S.; Sardar, M.; Godini, H.; Almasian, M.: COD removal from synthetic wastewater containing azithromycin using combined coagulation and a Fenton-like process. Environ. Eng. Manag. J. 13(12), 2929–2936 (2014)

    Google Scholar 

  56. Yonten, V.; Alp, H.; Yildirim, N.; Yildirim, N.C.; Ogedey, A.: Investigation of optimum conditions for efficient COD reduction in synthetic sulfamethazine solutions by Pleurotus eryngii var. ferulae using response surface methodology. J. Taiwan Inst. Chem. Eng. 80, 349–355 (2017)

    Google Scholar 

  57. Khellouf, M.; Chemini, R.; Salem, Z.; Khodja, M.; Zeriri, D.: Parametric study of COD reduction from textile processing wastewater using adsorption on cypress cone-based activated carbon: an analysis of a Doehlert response surface design. Arab. J. Sci. Eng. 44(12), 10079–10086 (2019)

    Google Scholar 

  58. Teğin, İ; Akdeniz, S.: Amberlit XAD-4 Polimerinin Biyosorbent Katkı Malzemesi Badem Kabuğu Kullanılarak Sulu Çözeltiden Cd Giderilmesi. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi 5(2), 1–14 (2017)

    Google Scholar 

  59. Yargıç, A.S.; Yarbay Şahin, R.Z.; Özbay, N.; Önal, E.: Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J. Clean. Prod. 88, 152–159 (2015)

    Google Scholar 

  60. García, A.V.; Santonja, M.R.; Sanahuja, A.B.; Selva, M.D.C.G.: Characterization and degradation characteristics of poly (ε-caprolactone)-based composites reinforced with almond skin residues. Polym. Degrad. Stabil. 108, 269–279 (2014)

    Google Scholar 

  61. Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.S.; Bandoch, G.F.G.; Asefa, T.; Visentainer, J.V.; Almeida, V.C.: Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem. Eng. J. 260, 291–299 (2015)

    Google Scholar 

  62. Jacques, R.A.; Lima, E.C.; Dias, S.L.; Mazzocato, A.C.; Pavan, F.A.: Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution. Sep. Purif. Technol. 57(1), 193–198 (2007)

    Google Scholar 

  63. Korkmaz, K.: Yeni bir gıda atığı kullanarak sulu çözeltiden biyosorpsiyon metoduyla bazı kirliliklerin giderimi. Master's thesis, Batman Üniversitesi Fen Bilimleri Enstitüsü (2019)

  64. Dos Santos, G.E.D.S.; Ide, A.H.; Duarte, J.L.S.; McKay, G.; Silva, A.O.S.; Meili, L.: Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported on Syagrus coronata biochar. Powder Technol. 364, 229–240 (2020)

    Google Scholar 

  65. Ozturk, D.; Dagdas, E.; Fil, B.F.; Bashir, M.J.K.: Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: one-step/two-response optimization. Environ. Technol. Innov. 5, 5–6 (2020). https://doi.org/10.1016/j.eti.2020.101264

    Article  Google Scholar 

  66. Melgoza, B.; León-Santiesteban, H.H.; López-Medina, R.; Tomasini, A.: Naproxen sorption by non-viable rhizopus oryzae biomass. Water Air Soil Pollut. 231, 30 (2020)

    Google Scholar 

  67. Rosset, M.; Sfreddo, L.W.; Hidalgo, G.E.N.; Perez-Lopez, O.W.; Féris, L.A.: Adsorbents derived from hydrotalcites for the removal of diclofenac in wastewater. Appl. Clay Sci. 175, 150–158 (2019)

    Google Scholar 

  68. Dos Santos, J.M.; Pereira, C.R.; Foletto, E.L.; Dotto, G.L.: Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption. Int. J. Biol. Macromol. 131, 301–308 (2019)

    Google Scholar 

  69. Zhao, Y.; Liu, F.; Qin, X.: Adsorption of diclofenac onto goethite: adsorption kinetics and effects of pH. Chemosphere 180, 373–378 (2017)

    Google Scholar 

  70. Larous, S.; Meniai, A.H.: Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive Stones. J. Hydrog. Energy 41, 10380–10390 (2016)

    Google Scholar 

  71. Darajeh, N.; Idris, A.; Masoumi, H.R.F.; Nourani, A.; Truong, P.; Sairi, N.A.: Modeling BOD and COD removal from palm oil mill secondary effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J. Environ. Manag. 181, 343 (2016)

    Google Scholar 

  72. Kousha, M.; Daneshvar, E.; Dopeikar, H.; Taghavi, D.; Bhatnagar, A.: Box–Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chem. Eng. J. 179, 158–168 (2012)

    Google Scholar 

  73. Erguven, G.; Yildirim, N.: Efficiency of some bacteria for chemical oxygen demand reduction of synthetic chlorsulfuron solutions under agiated culture conditions. Cell. Mol. Biol. 62, 92 (2016)

    Google Scholar 

  74. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57(385471), 1100–1107 (1906)

    Google Scholar 

  75. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Google Scholar 

  76. Temkin, M.; Pyzhev, V.: Kinetics of ammonia synthesis on promoted iron catalysts. Acta Phys. Chem. URSS 12, 327–356 (1940)

    Google Scholar 

  77. Jura, G.; Harkins, W.D.: Surfaces of solids. XIV. A unitary thermodynamic theory of the adsorption of vapors on solids and of insoluble flims on liquid subphases. J. Am. Chem. Soc. 68(10), 1941–1952 (1946)

    Google Scholar 

  78. Antunes, M.; Esteves, V.I.; Guégan, R.; Crespo, J.S.; Fernandes, A.N.; Giovanela, M.: Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem. Eng. J. 192, 114–121 (2012)

    Google Scholar 

  79. Jauris, I.M.; Matos, C.F.; Saucier, C.; Lima, E.C.; Zar-bin, A.J.G.; Fagan, S.B.; Machado, F.M.; Zanella, I.: Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 18(3), 1526–1536 (2016). https://doi.org/10.1039/c5cp05940b

    Article  Google Scholar 

  80. Kaur, M.; Datta, M.: Diclofenac sodium adsorption onto montmorillonite: adsorption equilibrium studies and drug release kinetics. Adsorpt. Sci. Technol. 32(5), 365–387 (2014)

    Google Scholar 

  81. Larous, S.; Meniai, A.H.: Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones. Int. J. Hydrogen Energy 41(24), 10380–10390 (2016)

    Google Scholar 

  82. Jodeh, S.; Abdelwahab, F.; Jaradat, N.; Warad, I.; Jodeh, W.: Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). J. As-Soc. Arab Uni. Basic Appl. Sci. 20(1), 32 (2016)

    Google Scholar 

  83. Wu, L.; Du, C.; He, J.; Yang, Z.; Li, H.: Effective adsorption of diclofenac sodium from neutral aqueous solution by low-cost lignite activated cokes. J. Hazard. Mater. 384, 121284 (2020)

    Google Scholar 

  84. Malhotra, M.; Suresh, S.; Garg, A.: Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics. Environ. Sci. Pollut. Res. 25(32), 32210–32220 (2018)

    Google Scholar 

  85. de Luna, M.D.G.; Budianta, W.; Rivera, K.K.P.; Arazo, R.O.: Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks. J. Environ. Chem. Eng. 5(2), 1465–1474 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely express their gratitude to Yuzuncu Yil University (Faculty of Engineering Research Laboratories) for their analytical assistance in carrying out our laboratory studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahap Yönten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özgüven, A., Yönten, V. & Kıvanç, M.R. The Utilization of a Statistical Program for Chemical Oxygen Demand Reduction and Diclofenac Sodium Removal from Aqueous Solutions via Agaricus campestris/Amberlite Styrene Divinylbenzene Biocomposite. Arab J Sci Eng 47, 441–454 (2022). https://doi.org/10.1007/s13369-021-05667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05667-8

Keywords

Navigation