Skip to main content
Log in

Removal of phenolphthalein by aspartame functionalized dialdehyde starch nano-composite and optimization by Plackett–Burman design

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, Plackett–Burman (P–B) experimental design combined with response surface methodology (RSM) of central composite design (CCD) was applied to study the removal of phenolphthalein (Php) from aqueous solution by aspartame functional magnetic dialdehyde starch nano-composite (APM-MDAS). This methodology enabled to identify the effects of the different factors studied and their interactions with a relative small number of experiments. By PBD, pH, sorbent dosage and contact time had a significant impact on Php removal. The maximum removal efficiency of phenolphthalein (95.41%) was achieved under the optimal conditions of pH, 10.68; sorbent dosage, 0.0015 (g mL−1); contact time, 118.13 s. The experimental results were in good agreement with the predicted values, indicating that the integrated P–B and CCD design is an effective approach for the statistical optimization of Php removal process. The kinetics of Php sorption fitted well with pseudo-second-order kinetic model and the isotherm data of compound could be well described by Langmuir model. The results showed that with convenient magnetic operation and synthesized by common industrialized raw materials, the APM-MDAS nano-composite is a novel, easy to prepare, environmentally friendly and effective adsorbent for the removal of phenolphthalein from aqueous solution. Additionally, the P–B design followed by the CCD method is an effective and powerful approach for the optimization of sorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Zhang, R.Y. Yang, Y.S. Gao, Y.F. Zhao, J.Y. Wang, L. Huang, J. Guo, T.T. Zhou, P. Lu, Z.H. Guo, Q. Wang, Sci. Rep. 4, 6797–6805 (2014)

    Article  CAS  Google Scholar 

  2. M. Vakili, M. Rafatullah, S. Babak, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Carbohydr. Polym. 113, 115–130 (2014)

    Article  CAS  Google Scholar 

  3. A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpaa, Chemosphere 160, 30–44 (2016)

    Article  CAS  Google Scholar 

  4. M.N. Zafar, Q. Dar, F. Nawaz, M.N. Zafar, M. Iqbal, M.F. Nazar, J. Mater. Res. Technol. 8, 713–725 (2019)

    Article  CAS  Google Scholar 

  5. W.H. Sun, C.J. Zhang, J. Chen, B.B. Zhang, H.Z. Zhang, Y.M. Zhang, L.J. Chen, J. Hazard. Mater. 324, 739–743 (2017)

    Article  CAS  Google Scholar 

  6. P.V. Nidheesh, M. Zhou, M.A. Oturan, Chemosphere 197, 210–227 (2018)

    Article  CAS  Google Scholar 

  7. Z.Z. Liu, S.J. Yang, Y.N. Yuan, J. Xu, Y.F. Zhu, J.J. Li, F. Wu, J. Hazard. Mater. 324, 583–592 (2017)

    Article  CAS  Google Scholar 

  8. S.T. Akar, Y.Y. Balk, O. Tuna, T. Akar, Carbohydr. Polym. 94, 400–408 (2013)

    Article  CAS  Google Scholar 

  9. V. Katheresan, J. Kansedo, S.Y. Lau, J. Environ. Chem. Eng. 6, 4676–4697 (2018)

    Article  CAS  Google Scholar 

  10. Y. Musico, C. Santos, M. Dalida, D. Rodrigues, J. Mater. Chem. A 1, 3789–3796 (2013)

    Article  CAS  Google Scholar 

  11. S. Ranjbari, B. Tanhaei, A. Ayati, M. Sillanpaa, Int. J. Biol. Macromol. 125, 989–998 (2019)

    Article  CAS  Google Scholar 

  12. S.M.A.S. Keshk, A.M. Ramadan, A.G. Sehemi, E. Yousef, S. Bondock, Carbohydr. Polym. 152, 624–631 (2016)

    Article  CAS  Google Scholar 

  13. N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi, G. Barzegar, J. Mol. Liq 256, 462–470 (2018)

    Article  CAS  Google Scholar 

  14. S. Gao, W. Zhang, H. Zhou, D. Chen, J. Rare Earths 36, 986–993 (2018)

    Article  CAS  Google Scholar 

  15. K. Hedayati, M. Goodarzi, D. Ghanbari, J Nanostruct 7(1), 32–39 (2017)

    CAS  Google Scholar 

  16. F. Kavousi, M. Goodarzi, D. Ghanbari, K. Hedayati, J. Mol. Struct. 1183, 324–330 (2019)

    Article  CAS  Google Scholar 

  17. K. Hedayati, M. Goodarzi, M. Kord, Main Group Met. Chem. 39(5–6), 183–194 (2016)

    CAS  Google Scholar 

  18. K.R. Reddy, K.P. Lee, A.I. Gopalan, Colloids Surf. A 320, 49–56 (2008)

    Article  CAS  Google Scholar 

  19. S. Ghattavi, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen. Energy 45, 24636–24656 (2020)

    CAS  Google Scholar 

  20. R.L. Plackett, J.P. Burman, Biometrika 33, 305–325 (1946)

    Article  Google Scholar 

  21. W. Ding, P. Zhao, R. Li, Carbohydr. Polym. 83, 802–807 (2011)

    Article  CAS  Google Scholar 

  22. X.D. Xin, Q. Wei, J. Yang, L.G. Yan, R. Feng, G.D. Chen, B. Du, H. Li, Chem. Eng. J. 184, 132–140 (2012)

    Article  CAS  Google Scholar 

  23. L.H. Zhang, Q. Sun, D.H. Liu, A.H. Lu, Mater. Chem. A 1, 9477–9483 (2013)

    Article  CAS  Google Scholar 

  24. A. Norouzi, A. Nezamzadeh-Ejhieh, Phys. B 599, 412422–412431 (2020)

    Article  CAS  Google Scholar 

  25. S. Guo, D. Li, L. Zhang, J. Li, E. Wang, Biomaterials 30, 1881–1889 (2009)

    Article  CAS  Google Scholar 

  26. A. Noruozi, A. Nezamzadeh-Ejhieh, Chem. Phys. Lett. 752, 137587–137597 (2020)

    Article  CAS  Google Scholar 

  27. A.S. Guzun, M. Stroescu, S.I. Jinga, G. Voicu, A.M. Grumezescu, A.M. Holban, Mater. Sci. Eng. C. 42, 280–288 (2014)

    Article  CAS  Google Scholar 

  28. M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochim. Acta 223, 47–62 (2017)

    Article  CAS  Google Scholar 

  29. T. Tamiji, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem. 829, 95–105 (2018)

    Article  CAS  Google Scholar 

  30. S. Senobari, A. Nezamzadeh-Ejhieh, J. Mol. Liq 257, 173–183 (2018)

    Article  CAS  Google Scholar 

  31. M. Nasiri-Ardali, A. Nezamzadeh-Ejhieh, Mater. Chem. Phys 240, 122142–122156 (2020)

    Article  CAS  Google Scholar 

  32. M.H. Mohamed, L.D. Wilson, J.V. Headley, K.M. Peru, J. Colloid Interface Sci. 356, 217–226 (2011)

    Article  CAS  Google Scholar 

  33. P. Tan, Y. Hu, J. Mol. Liq. 242, 181–189 (2017)

    Article  CAS  Google Scholar 

  34. R. Fuhrer, I.K. Herrmann, E.K. Athanassiou, R.N. Grass, W.J. Stark, Langmuir 27, 1924–1929 (2011)

    Article  CAS  Google Scholar 

  35. M. Vadi, V. Namavar, Orient. J. Chem. 29, 419–425 (2013)

    Article  CAS  Google Scholar 

  36. N. Gao, J. Yang, Y. Wu, J. Yue, G. Cao, A. Zhang, L. Ye, Z. Feng, React. Funct. Polym. 141, 100–111 (2019)

    Article  CAS  Google Scholar 

  37. T. Uyar, R. Havelund, Y. Nur, J. Hacaloglu, F. Besenbacher, P. Kingshott, J. Membr. Sci. 332, 129–137 (2009)

    Article  CAS  Google Scholar 

  38. M.H. Mohamed, L.D. Wilson, Nanomaterials 5, 969–980 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of this work by University of Torbat-e jam, Torbat-e jam, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, S., Zare, L. & Eshagh Ahmadi, S. Removal of phenolphthalein by aspartame functionalized dialdehyde starch nano-composite and optimization by Plackett–Burman design. J IRAN CHEM SOC 18, 3417–3427 (2021). https://doi.org/10.1007/s13738-021-02275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02275-z

Keywords

Navigation