Skip to main content
Log in

Designing a Feasible Phenol Destruction Process Using LaM1−xCuxO3 (M = Co, Cr, Fe) Perovskites as Heterogeneous Fenton-Like Catalysts

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Phenol is one of the most toxic and carcinogenic oxygenated organic compounds, which is often found in wastewater of various industries. Therefore, design of efficient phenol degradation method becomes crucial. B-site substitution into perovskite structure generates synergistic effects in its structure which enhances catalytic properties. However, to effectively design an economically feasible process, substitution of cheap and catalytically active B-site metal elements becomes significant. In view of this, three perovskite-type oxides with chemical formula LaM0.5Cu0.5O3 (M = Co, Cr, Fe) were synthesized and characterized in this work. Furthermore, their application in a feasible phenol oxidation process has been reported. The XRD and XPS analysis results demonstrate successful B-site substitution of transition metal elements in perovskite structure. Remarkably high BET surface areas were obtained for all three catalysts (32–47 m2/g). The results of catalytic activity tests constructively reveal that LaCo0.5Cu0.5O3 is superior when compared with the other two catalysts. Highest TOC removal and best catalytic performance was exhibited by all the catalysts at 90 ℃, atmospheric pressure, 1 g/l catalyst loading and 700 rpm stirring speed. The reaction was successfully completed with hydrogen peroxide concentration less than the stoichiometric amount required for the reaction. The order of catalytic activity is LaCo0.5Cu0.5O3 > LaCr0.5Cu0.5O3 > LaFe0.5Cu0.5O3. This order of catalytic activity of the prepared catalysts can be attributed to high amount of lattice oxygen provided by LaCo0.5Cu0.5O3 catalyst, and the same conclusion can be drawn from the XPS analysis. This suggests that excellent catalytic performance can be attained at low costs for phenol oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gao, P.; Li, N.; Wang, A.; Wang, X.; Zhang, T.: Perovskite LaMnO3 hollow nanospheres: The synthesis and the application in catalytic wet air oxidation of phenol. Mater. Lett. 92, 173–176 (2013). https://doi.org/10.1016/j.matlet.2012.10.091

    Article  Google Scholar 

  2. Yan, Y.; Jiang, S.; Zhang, H.: Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor. Sep. Purif. Technol. 133, 365–374 (2014). https://doi.org/10.1016/j.seppur.2014.07.014

    Article  Google Scholar 

  3. Chen, D.L.; Pan, K.L.; Chang, M.B.: Catalytic removal of phenol from gas streams by perovskite-type catalysts. J. Environ. Sci. China 56, 131–139 (2017). https://doi.org/10.1016/j.jes.2016.04.031

    Article  Google Scholar 

  4. Zazo, J.A.; Casas, J.A.; Mohedano, A.F.; Rodríguez, J.J.: Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B Environ. 65, 261–268 (2006). https://doi.org/10.1016/j.apcatb.2006.02.008

    Article  Google Scholar 

  5. Jiang, H.L.; Tay, J.H.; Maszenan, A.M.; Tay, S.T.L.: Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ. Sci. Technol. 40, 6137–6142 (2006). https://doi.org/10.1021/es0609295

    Article  Google Scholar 

  6. Autenrieth, R.-L.; Bonner, J.S.; Akgerman, A.; Okaygun, M.; Mccreary, E.M.: Biodegradation of phenolic wastes* (1991)

  7. Esplugas, S.; Giménez, J.; Contreras, S.; Pascual, E.; Rodríguez, M.: Comparison of different advanced oxidation processes for phenol degradation. Water Res. 36, 1034–1042 (2002). https://doi.org/10.1016/S0043-1354(01)00301-3

    Article  Google Scholar 

  8. Olmez-Hanci, T.; Arslan-Alaton, I.: Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J. 224, 10–16 (2013). https://doi.org/10.1016/j.cej.2012.11.007

    Article  Google Scholar 

  9. Feng, C.; Chen, Z.; Jing, J.; Hou, J.: The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. J. Mater. Chem. C. 8, 3000–3009 (2020). https://doi.org/10.1039/c9tc05010h

    Article  Google Scholar 

  10. Sable, S.S.; Shah, K.J.; Chiang, P.C.; Lo, S.L.: Catalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs). J. Taiwan Inst. Chem. Eng. 91, 434–440 (2018). https://doi.org/10.1016/j.jtice.2018.06.030

    Article  Google Scholar 

  11. Yan, W.; Sun, F.; Liu, J.; Zhou, Y.: Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chem. Eng. J. 352, 1–9 (2018). https://doi.org/10.1016/j.cej.2018.06.187

    Article  Google Scholar 

  12. Ren, T.; Jin, Z.; Yang, J.; Hu, R.; Zhao, F.; Gao, X.; Zhao, C.: Highly efficient and stable p-LaFeO3/n-ZnO heterojunction photocatalyst for phenol degradation under visible light irradiation. J. Hazard. Mater. 377, 195–205 (2019). https://doi.org/10.1016/j.jhazmat.2019.05.070

    Article  Google Scholar 

  13. Jain, A.; Pal, S.L.; Jaiswal, Y.; Srivastava, S.: XRD and TG-DTG Probes for Thermal Stability and Durability of CuPbI3: Eu+2/Eu+3 and CuPbI3 Perovskite as Catalysts. J. Inst. Eng. Ser. E. 1–5 (2021). Doi: https://doi.org/10.1007/s40034-020-00187-w

  14. Tanaka, H.; Misono, M.: PII: S1359–0286(01)00035–3. (2001)

  15. Wei, T.Y.; Wang, Y.Y.; Wan, C.C.: Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders. J. Photochem. Photobiol. A Chem. 55, 115–126 (1990). https://doi.org/10.1016/1010-6030(90)80024-R

    Article  Google Scholar 

  16. Valange, S.; Gabelica, Z.; Abdellaoui, M.; Clacens, J.M.; Barrault, J.: Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol. Microporous Mesoporous Mater. 30, 177–185 (1999). https://doi.org/10.1016/S1387-1811(99)00031-1

    Article  Google Scholar 

  17. Carriazo, J.G.; Guelou, E.; Barrault, J.; Tatibouët, J.M.; Moreno, S.: Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Appl. Clay Sci. 22, 303–308 (2003). https://doi.org/10.1016/S0169-1317(03)00124-8

    Article  Google Scholar 

  18. Catrinescu, C.; Teodosiu, C.; Macoveanu, M.; Miehe-Brendlé, J.; Le Dred, R.: Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res. 37, 1154–1160 (2003). https://doi.org/10.1016/S0043-1354(02)00449-9

    Article  Google Scholar 

  19. Liou, R.M.; Chen, S.H.: CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol. J. Hazard. Mater. 172, 498–506 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.012

    Article  Google Scholar 

  20. Massa, P.; Ivorra, F.; Haure, P.; Fenoglio, R.: Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems. J. Hazard. Mater. 190, 1068–1073 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.033

    Article  Google Scholar 

  21. Inchaurrondo, N.S.; Massa, P.; Fenoglio, R.; Font, J.; Haure, P.: Efficient catalytic wet peroxide oxidation of phenol at moderate temperature using a high-load supported copper catalyst. Chem. Eng. J. 198–199, 426–434 (2012). https://doi.org/10.1016/j.cej.2012.05.103

    Article  Google Scholar 

  22. Valkaj, K.M.; Katovic, A.; Zrnčević, S.: Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst. J. Hazard. Mater. 144, 663–667 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.099

    Article  Google Scholar 

  23. Pinho, M.T.; Gomes, H.T.; Ribeiro, R.S.; Faria, J.L.; Silva, A.M.T.: Applied catalysis B : environmental carbon nanotubes as catalysts for catalytic wet peroxide oxidation of highly concentrated phenol solutions: towards process intensification. Applied Catal. B Environ. 165, 706–714 (2015). https://doi.org/10.1016/j.apcatb.2014.10.057

    Article  Google Scholar 

  24. Rusevova, K.; Köferstein, R.; Rosell, M.; Richnow, H.H.; Kopinke, F.D.; Georgi, A.: LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. Chem. Eng. J. 239, 322–331 (2014). https://doi.org/10.1016/j.cej.2013.11.025

    Article  Google Scholar 

  25. Sotelo, J.L.; Ovejero, G.; Martínez, F.; Melero, J.A.; Milieni, A.: Catalytic wet peroxide oxidation of phenolic solutions over a LaTi 1-xCuxO3 perovskite catalyst. Appl. Catal. B Environ. 47, 281–294 (2004). https://doi.org/10.1016/j.apcatb.2003.09.007

    Article  Google Scholar 

  26. Singh, C.; Rakesh, M.: Oxidation of phenol using LaMnO3 perovskite, TiO2, H2O2 and UV radiation. Indian J. Chem. Technol. 17, 451–454 (2010)

    Google Scholar 

  27. Resini, C.; Catania, F.; Berardinelli, S.; Paladino, O.; Busca, G.: Catalytic wet oxidation of phenol over lanthanum strontium manganite. Appl. Catal. B Environ. 84, 678–683 (2008). https://doi.org/10.1016/j.apcatb.2008.06.005

    Article  Google Scholar 

  28. Zhu, H.; Zhang, P.; Dai, S.: Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 5, 6370–6385 (2015). https://doi.org/10.1021/acscatal.5b01667

    Article  Google Scholar 

  29. Jaiswal, Y.; Pal, S.L.: Structural Characterization of Indian Vitrinite-Rich Bituminous Karharbari Coal. ACS Omega 5, 6336–6347 (2020). https://doi.org/10.1021/acsomega.9b03674

    Article  Google Scholar 

  30. Jaiswal, Y.; Pal, S.L.; Jain, A.; Kush, L.; Jaiswal, H.; Srivastava, S.: A multi-tool structural change investigation of Indian vitrinite rich bituminous coal due to CS2/NMP interaction. J. Mol. Liq. 323, 114599 (2020). https://doi.org/10.1016/j.molliq.2020.114599

    Article  Google Scholar 

  31. Kush, L.; Srivastava, S.; Jaiswal, Y.; Anant, R.: Structural, magnetic, and exchange bias behavior of nickel-based Ni2CuCrFeAlx (x = 0.5, 1.0, 1.5, and 2.5) high-entropy alloys. J. Mater. Eng. Perform. 29, 2256–2273 (2020). https://doi.org/10.1007/s11665-020-04791-0

    Article  Google Scholar 

  32. Kush, L.; Srivastava, S.; Jaiswal, Y.; Srivastava, Y.: Thermoelectric behaviour with high lattice thermal conductivity of Nickel base Ni2CuCrFeAlx (x = 0.5, 1.0, 1.5 and 2.5) high entropy alloys. Mater. Res. Express. 7, 16 (2020). https://doi.org/10.1088/2053-1591/ab7d5a

    Article  Google Scholar 

  33. Berger, D.; Jitaru, I.; Stanica, N.; Perego, R.; Schoonman, J.: Complex precursors for doped lanthanum chromite synthesis. J. Mater. Synth. Process. 9, 137–142 (2001). https://doi.org/10.1023/A:1013297430679

    Article  Google Scholar 

  34. Adaika, K.; Omari, M.: Synthesis and physicochemical characterization of LaCr1−xCuxO3. J. Sol-Gel Sci. Technol. 75, 298–304 (2015). https://doi.org/10.1007/s10971-015-3699-z

    Article  Google Scholar 

  35. Yao, J.; Liu, J.; Hofbauer, H.; Chen, G.; Yan, B.; Shan, R.; Li, W.: Biomass to hydrogen-rich syngas via steam gasification of bio-oil/biochar slurry over LaCo1-xCuxO3 perovskite-type catalysts. Energy Convers. Manag. 117, 343–350 (2016). https://doi.org/10.1016/j.enconman.2016.03.043

    Article  Google Scholar 

  36. Zhou, C.; Liu, X.; Wu, C.; Wen, Y.; Xue, Y.; Chen, R.; Zhang, Z.; Shan, B.; Yin, H.; Wang, W.G.: NO oxidation catalysis on copper doped hexagonal phase LaCoO3: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 16, 5106–5112 (2014). https://doi.org/10.1039/c3cp54963a

    Article  Google Scholar 

  37. Abdolrahmani, M., Abdolrahmani, M., Parvari, M., Habibpoor, M.: Methane combustion and CO oxidation on Ag-doped LaMn 0.8 Cu 0.2 O 3±δ mixed oxides prepared by Pechini and sol-gel methods the role of water in heterogeneous catalysis view project control of Brønsted acid site of HZSM-5 zeolite by chemical washing using (2012)

  38. Zhang, H.-M.; Teraoka, Y.; Yamazoe, N.: Preparation of perovskite-type oxides with large surface area by citrate process. Chem. Lett. 16, 665–668 (1987). https://doi.org/10.1246/cl.1987.665

    Article  Google Scholar 

  39. Cai, Y.; Zhu, X.; Hu, W.; Zheng, C.; Yang, Y.; Chen, M.; Gao, X.: Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M = Mn, Fe, and Co) perovskite catalysts. J. Ind. Eng. Chem. 70, 447–452 (2019). https://doi.org/10.1016/j.jiec.2018.11.007

    Article  Google Scholar 

  40. Benaicha, A.; Omai, M.O.: Synthesis and characterization of perovskite oxides lafe1-xcuxo3 (0 ≤ x ≤ 0.4) obtained by sol-gel method. J. Fundam. Appl. Sci. 10, 132 (2018). https://doi.org/10.4314/jfas.v10i1.9

    Article  Google Scholar 

  41. Parrino, F.; García-López, E.; Marcì, G.; Palmisano, L.; Felice, V.; Sora, I.N.; Armelao, L.: Cu-substituted lanthanum ferrite perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar light irradiation. J. Alloys Compd. 682, 686–694 (2016). https://doi.org/10.1016/j.jallcom.2016.05.017

    Article  Google Scholar 

  42. Ravuru, S.S.; Jana, A.; De, S.: Synthesis of NiAl-layered double hydroxide with nitrate intercalation: application in cyanide removal from steel industry effluent. J. Hazard. Mater. 373, 791–800 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.122

    Article  Google Scholar 

  43. Wang, G.; Cheng, C.; Zhu, J.; Wang, L.; Gao, S.; Xia, X.: Enhanced degradation of atrazine by nanoscale LaFe 1–x Cu x O 3-δ perovskite activated peroxymonosulfate: performance and mechanism. Sci. Total Environ. 673, 565–575 (2019). https://doi.org/10.1016/j.scitotenv.2019.04.098

    Article  Google Scholar 

  44. Zhang, R.; Villanueva, A.; Alamdari, H.; Kaliaguine, S.: Cu- and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene. J. Catal. 237, 368–380 (2006). https://doi.org/10.1016/j.jcat.2005.11.019

    Article  Google Scholar 

  45. Liu, F.; Zhang, H.; Yan, Y.; Huang, H.: Graphene as efficient and robust catalysts for catalytic wet peroxide oxidation of phenol in a continuous fixed-bed reactor. Sci. Total Environ. 701, 134772 (2019). https://doi.org/10.1016/j.scitotenv.2019.134772

    Article  Google Scholar 

  46. Valkaj, K.M.; Katović, A.; Zrnčević, S.: Catalytic properties of Cu/13X zeolite based catalyst in catalytic wet peroxide oxidation of phenol. Ind. Eng. Chem. Res. 50, 4390–4397 (2011). https://doi.org/10.1021/ie102223g

    Article  Google Scholar 

  47. Mei, J.G.; Yu, S.M.; Cheng, J.: Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe-Ti-PILC employing microwave irradiation. Catal. Commun. 5, 437–440 (2004). https://doi.org/10.1016/j.catcom.2004.05.009

    Article  Google Scholar 

  48. Hu, Q.; Huang, J.; Li, G.; Jiang, Y.; Lan, H.; Guo, W.; Cao, Y.: Origin of the improved photocatalytic activity of Cu incorporated TiO 2 for hydrogen generation from water. Appl. Surf. Sci. 382, 170–177 (2016). https://doi.org/10.1016/j.apsusc.2016.04.126

    Article  Google Scholar 

  49. Tien-Thao, N.; Alamdari, H.; Zahedi-Niaki, M.H.; Kaliaguine, S.: LaCo1-xCuxO3-δ perovskite catalysts for higher alcohol synthesis. Appl. Catal. A Gen. 311, 204–212 (2006). https://doi.org/10.1016/j.apcata.2006.06.029

    Article  Google Scholar 

  50. Mori, M.; Yamamoto, T.; Ichikawa, T.; Takeda, Y.: Dense sintered conditions and sintering mechanisms for alkaline earth metal (Mg, Ca and Sr)-doped LaCrO3 perovskites under reducing atmosphere. Solid State Ionics 148, 93–101 (2002). https://doi.org/10.1016/S0167-2738(02)00109-1

    Article  Google Scholar 

  51. Porta, P.; De Rossi, S.; Faticanti, M.; Minelli, G.; Pettiti, I.; Lisi, L.; Turco, M.: Article ID jssc. (1999)

  52. Glisenti, A.; Pacella, M.; Guiotto, M.; Natile, M.M.; Canu, P.: largely Cu-doped LaCo1-xCuxO3 perovskites for TWC: TOWARD new PGM-free catalysts. Appl. Catal. B Environ. 180, 94–105 (2016). https://doi.org/10.1016/j.apcatb.2015.06.017

    Article  Google Scholar 

  53. Branch, T.N.: Experimental and kinetic study of CO oxidation over. 15, 91–102 (2018)

  54. Yang, S.; Zhu, W.; Wang, J.; Chen, Z.: Catalytic wet air oxidation of phenol over CeO2–TiO2 catalyst in the batch reactor and the packed-bed reactor. J. Hazard. Mater. 153, 1248–1253 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.084

    Article  Google Scholar 

  55. Huang, K.; Xu, Y.; Wang, L.; Wu, D.: RSC Advances Heterogeneous catalytic wet peroxide oxidation of simulated phenol wastewater by copper metal—organic frameworks. RSC Adv. 5, 32795–32803 (2015). https://doi.org/10.1039/C5RA01707F

    Article  Google Scholar 

  56. Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe. Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  Google Scholar 

  57. Jana, A.; Roy, O.; Ravuru, S.S.; De, S.: Tuning of graphene oxide intercalation in magnesium aluminium layered double hydroxide and their immobilization in polyacrylonitrile beads by single step mussel inspired phase inversion: a super adsorbent for lead. Chem. Eng. J. 391, 123587 (2020). https://doi.org/10.1016/j.cej.2019.123587

    Article  Google Scholar 

  58. López-Suárez, F.E.; Parres-Esclapez, S.; Bueno-López, A.; Illán-Gómez, M.J.; Ura, B.; Trawczynski, J.: Role of surface and lattice copper species in copper-containing (Mg/Sr)TiO3 perovskite catalysts for soot combustion. Appl. Catal. B Environ. 93, 82–89 (2009). https://doi.org/10.1016/j.apcatb.2009.09.015

    Article  Google Scholar 

  59. Sun, K.; Lu, W.; Qiu, F.; Liu, S.; Xu, X.: Direct synthesis of DME over bifunctional catalyst: surface properties and catalytic performance. Appl. Catal. A Gen. 252, 243–249 (2003). https://doi.org/10.1016/S0926-860X(03)00466-6

    Article  Google Scholar 

  60. Gopinath, C.S.; Mathew, T.; Shiju, N.R.; Sreekumar, K.; Rao, B.S.: Cu–Co synergism in Cu1-xCoxFe2O4—catalysis and XPS aspects. J. Catal. 210, 405–417 (2002). https://doi.org/10.1006/jcat.2002.3712

    Article  Google Scholar 

  61. Toniolo, F.S.; Magalhães, R.N.S.H.; Perez, C.A.C.; Schmal, M.: Structural investigation of LaCoO 3 and LaCoCuO 3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane. Appl. Catal. B Environ. 117–118, 156–166 (2012). https://doi.org/10.1016/j.apcatb.2012.01.009

    Article  Google Scholar 

  62. Yang, Z.; Huang, Y.; Dong, B.; Li, H.: Controlled synthesis of highly ordered LaFeO 3 nanowires using a citrate-based sol–gel route. Mater. Res. Bull 41, 274–281 (2006). https://doi.org/10.1016/j.materresbull.2005.08.022

    Article  Google Scholar 

  63. Zhang, J.; Deng, H.; Lin, L.: Wet aerobic oxidation of lignin into aromatic aldehydes catalysed by a perovskite-type oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2). Molecules 14, 2747–2757 (2009). https://doi.org/10.3390/molecules14082747

    Article  Google Scholar 

  64. Solymosi, F.; Raskó, J.; Papp, E.; Oszkó, A.; Bánsági, T.: Catalytic decomposition and oxidation of CH3Cl on Cr2O3-doped SnO2. Appl. Catal. A Gen. 131, 55–72 (1995). https://doi.org/10.1016/0926-860X(95)00125-5

    Article  Google Scholar 

  65. Hilpert, K.; Steinbrech, R.W.; Boroomand, F.; Wessel, E.; Meschke, F.; Zuev, A.; Teller, O.; Nickel, H.; Singheiser, L.: Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 23, 3009–3020 (2003). https://doi.org/10.1016/S0955-2219(03)00097-9

    Article  Google Scholar 

  66. Jin, F.; Endo, T.; Takizawa, H.; Shimada, M.: Sdarticle-30.Pdf (1994)

  67. Sal’nikov, V.V.; Pankratov, A.A.; Zemtsov, V.I.: Structural, optical, and electrical properties of doped samarium chromite. Inorg. Mater. 41, 172–177 (2005). https://doi.org/10.1007/s10789-005-0038-8

    Article  Google Scholar 

  68. Stypula, B.; Stoch, J.: The characterization of passive films on chromium electrodes by XPS. Corros. Sci. 36, 2159–2167 (1994). https://doi.org/10.1016/0010-938X(94)90014-0

    Article  Google Scholar 

  69. Xia, T.; Li, Q.; Meng, J.; Cao, X.: Structural characterization, stability and electrical properties of strontium niobate ceramic. Mater. Chem. Phys. 111, 335–340 (2008). https://doi.org/10.1016/j.matchemphys.2008.04.021

    Article  Google Scholar 

  70. Belessi, V.C.; Ladavos, A.K.; Pomonis, P.J.: Methane combustion on La–Sr–Ce–Fe–O mixed oxides: bifunctional synergistic action of SrFeO. Appl. Catal. 31, 183–194 (2001)

    Article  Google Scholar 

  71. Grünert, W.; Schlogl, R.: Photoelectron spectroscopy of zeolites. Mol. Sieves. 4, 467–515 (2004). https://doi.org/10.1007/b94241

    Article  Google Scholar 

  72. Sauvet, A.L.; Fouletier, J.: Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature. J. Power Sources. 101, 259–266 (2001). https://doi.org/10.1016/S0378-7753(01)00763-7

    Article  Google Scholar 

  73. Fierro, J.L.G.; Tejuca, L.G.: Non-stoichiometric surface behaviour of LaMO3 oxides as evidenced by XPS. Appl. Surf. Sci. 27, 453–457 (1987). https://doi.org/10.1016/0169-4332(87)90154-1

    Article  Google Scholar 

  74. Carley, A.F.; Roberts, M.W.; Santra, A.K.: Interaction of oxygen and carbon monoxide with CsAu surfaces. J. Phys. Chem. B. 101, 9978–9983 (1997). https://doi.org/10.1021/jp971780+

    Article  Google Scholar 

  75. Hu, W.; Zhang, Y.; Liu, S.; Zheng, C.; Gao, X.; Nova, I.; Tronconi, E.: Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3. Appl. Catal. B Environ. 206, 449–460 (2017). https://doi.org/10.1016/j.apcatb.2017.01.036

    Article  Google Scholar 

  76. Hu, W.; Gao, X.; Deng, Y.; Qu, R.; Zheng, C.; Zhu, X.; Cen, K.: Deactivation mechanism of arsenic and resistance effect of SO42- on commercial catalysts for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 293, 118–128 (2016). https://doi.org/10.1016/j.cej.2016.02.095

    Article  Google Scholar 

  77. Mcintyre, N.S.; Cook, M.G.: X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47, 2208–2213 (1975). https://doi.org/10.1021/ac60363a034

    Article  Google Scholar 

  78. Ovejero, G.; Sotelo, J.L.; Martínez, F.; Melero, J.A.; Gordo, L.: Wet peroxide oxidation of phenolic solutions over different iron-containing zeolitic materials. Ind. Eng. Chem. Res. 40, 3921–3928 (2001). https://doi.org/10.1021/ie000896g

    Article  Google Scholar 

  79. Shende, R.V.; Mahajani, V.V.: Kinetics of wet oxidation of formic acid and acetic acid. Ind. Eng. Chem. Res. 36, 4809–4814 (1997). https://doi.org/10.1021/ie970048u

    Article  Google Scholar 

  80. Centi, G.; Perathoner, S.; Torre, T.; Verduna, M.G.: Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts. Catal. Today. 55, 61–69 (2000). https://doi.org/10.1016/S0920-5861(99)00226-6

    Article  Google Scholar 

  81. Alejandre, A.; Medina, F.; Rodriguez, X.; Salagre, P.; Sueiras, J.E.: Preparation and activity of Cu–Al mixed oxides via hydrotalcite-like precursors for the oxidation of phenol aqueous solutions. J. Catal. 188, 311–324 (1999). https://doi.org/10.1006/jcat.1999.2625

    Article  Google Scholar 

  82. Delouane, B.; Legube, B.: Comparative efficiency of three systems (Os, O3/H2O2 and O3/TiO2) for the oxidation of natural organic matter in water. Ozone Sci. Eng. 15, 419–432 (1993). https://doi.org/10.1080/01919512.1993.10555733

    Article  Google Scholar 

  83. Rey, A.; Faraldos, M.; Casas, J.A.; Zazo, J.A.; Bahamonde, A.; Rodríguez, J.J.: Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface. Appl. Catal. B Environ. 86, 69–77 (2009). https://doi.org/10.1016/j.apcatb.2008.07.023

    Article  Google Scholar 

  84. Guo, J.; Al-Dahhan, M.: Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind. Eng. Chem. Res. 42, 2450–2460 (2003). https://doi.org/10.1021/ie020344t

    Article  Google Scholar 

  85. Klaewkla, R.; Kulprathipanja, S.; Rangsunvigit, P.; Rirksomboon, T.; Rathbun, W.; Nemeth, L.: Kinetic modelling of phenol hydroxylation using titanium and tin silicalite-1s: effect of tin incorporation. Chem. Eng. J. 129, 21–30 (2007). https://doi.org/10.1016/j.cej.2006.10.034

    Article  Google Scholar 

  86. Lado Ribeiro, A.R.; Moreira, N.F.F.; Li Puma, G.; Silva, A.M.T.: Impact of water matrix on the removal of micropollutants by advanced oxidation technologies, (2019)

  87. Yang, S.; Yang, X.; Shao, X.; Niu, R.; Wang, L.: Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J. Hazard. Mater. 186, 659–666 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.057

    Article  Google Scholar 

Download references

Acknowledgement

Funding for this work from Maulana Azad National Institute of Technology, Bhopal (MP) 462,003, is gratefully acknowledged. We also express our gratitude to the department of Chemical Engineering, Indian Institute of Technology, Roorkee, for providing required facilities for completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunder Lal Pal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Pal, S.L., Jaiswal, Y. et al. Designing a Feasible Phenol Destruction Process Using LaM1−xCuxO3 (M = Co, Cr, Fe) Perovskites as Heterogeneous Fenton-Like Catalysts. Arab J Sci Eng 47, 5777–5796 (2022). https://doi.org/10.1007/s13369-021-05655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05655-y

Keywords

Navigation