Skip to main content

Advertisement

Log in

Reservoir Wellbore Stability Analysis and Weak Zones Identification Using the 1D MEM, Swelling Tests and UCS: A Case Study From Mumbai Offshore, India

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Reservoir geomechanical studies play a decisive role in identifying wellbore instability and weak zones in offshore petroleum reservoirs. In this study, an integrated workflow developed with 1D Mechanical Earth Models (1D MEM), uniaxial compressive strength and swelling tests using well logs, drilling, and core data of production and exploratory wells from the North-Heera field, Mumbai offshore, India. Lithology-based correlations are utilized for calculating continuous profiles of rock mechanical properties by taking well logs as a primary source of input. Insights of fracture gradients and stresses are generated by interpretation of the pore pressure. UCS created from the well logs shows the low value of 15 MPa and high Poison's ratio of 0.38–0.45. Fracture pressure analysis of the wells specifies the lower fracture initiation pressures at 300 m are 5ppg–15ppg, which are shale and clay formation. Shale swelling tests are performed to know the hydration properties of shales present at shallow depths. The core samples' loading tests' results are very close to the UCS models constructed from the well logs. The combined analysis examines fracture pressures around wellbores, hydration of shales, weak zones identification, and wellbore instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

1D:

One dimensional

3D:

Three dimensional

ONGC:

Oil and Natural Gas Corporation Limited

DGH:

Director general of hydrocarbons

MD:

Measured depth

PPG:

Pounds per Gallon

TVD:

True vertical depth

TVD-RT:

True vertical depth from rotary table

LOT:

Leak-off test

PR:

Poison’s ratio

UCS:

Unconfined compressive strength

IFC:

Internal friction coefficient

YM:

Young’s modulus

CAPEX:

Capital expenditure

OPEX:

Operating expenditure

NCT:

Normal compaction trend

σv :

Vertical stress

σw :

Vertical load by water column

σo :

Vertical load at the point where the density log began

ρ:

Density

α:

Biot’s constant

Pp :

Pore pressure

E:

Young’s modulus

Ɛx :

Compressional horizontal strain (x-direction)

Ɛy :

Extensional horizontal strain(y-direction)

FIT:

Formation Integrity Test

Gdyn :

Dynamic Bulk modulus

νdyn :

Dynamic Poison’s ratio

Edyn :

Dynamic Young’s modulus

Vp :

P-wave Velocity

Vs :

S- wave Velocity

Estatic :

Static Young’s modulus

UCSlimestone :

Unconfined compressive strength of limestone

UCSshale :

Unconfined compressive strength of shale

Ø:

Internal friction coefficient

MPa:

Mega Pascal

GPa:

Giga Pascal

YF:

Yellow Fluorescence

GYF:

Green Yellow Fluorescence

Pf :

Fracture Pressure

ν:

Poison’s ratio

FS:

Free Swell

V:

Final Volume

V° :

Initial Volume

Dn:

Density

Ω:

Resistivity

References

  1. Xia, L.W.; Cao, J.; Wang, M.; Mi, J.L.; Wang, T.T.: A review of carbonates as hydrocarbon source rocks: basic geochemistry and oil–gas generation. Petr. Sci. 16, 713–728 (2019). https://doi.org/10.1007/s12182-019-0343-5

    Article  Google Scholar 

  2. Du, H.; Radonjic, M.; Olabode, A.O.: Impact of clay mineralogy on geomechanics of shale caprocks. 51st US Rock Mech Geomech. Symp. 4, 2580–2586 (2017)

    Google Scholar 

  3. Al-Awad, M.N.J.; Smart, B.G.D.: Characterization of shale-drilling fluid interaction mechanisms related to wellbore instability. J. King Saud Univ. Eng. Sci. 8, 187–214 (1996). https://doi.org/10.1016/s1018-3639(18)30657-3

    Article  Google Scholar 

  4. Bybee, K.: Wellbore strengthening in shale. J. Pet. Technol. 60, 71–72 (2008). https://doi.org/10.2118/0108-0071-JPT

    Article  Google Scholar 

  5. Russell, K.A.; Ayan, C.; Hart, N.J.; Rodriguez, J.M.; Scholey, H.; Sugden, C.; Davidson, J.K.: Predicting and preventing wellbore instability: Tullich field development North Sea. SPE Drill. Complet. 21, 12–21 (2006)

    Article  Google Scholar 

  6. Cheatham, J.B.: Distinguished author series wellbore stability. J. Pet. Technol. 36, 889–896 (1984)

    Article  Google Scholar 

  7. Al-Awad, M.N.J.; Smart, B.G.D.: Modified failure criterion for shales. Rock Char. Model. Eng. Des. Methods 5, 297–302 (2013)

    Google Scholar 

  8. Santos, H.; Diek, A.; da Fontoura, S.; J.C.R. : shale reactivity test: a novel approach to evaluate shale-fluid interaction. Int. J. Rock Mech. Min. Sci. 34, 268.e1-268.e11 (1997). https://doi.org/10.1016/s1365-1609(97)00125-1

    Article  Google Scholar 

  9. Pašić, B.; Gaurina-Medimurec, N.; Matanović, D.: Wellbore instability: causes and consequences. Rud. Geol. Naft. Zb. 19, 87–98 (2007)

    Google Scholar 

  10. Alkamil, E.H.K.; Abbood, H.R.; Flori, R.E.; Eckert, A.: Case study of wellbore stability evaluation for the Mishrif Formation. Iraq. J. Pet. Sci. Eng. 164, 663–674 (2018). https://doi.org/10.1016/j.petrol.2018.01.018

    Article  Google Scholar 

  11. Abousleiman, Y.; Tran, M.; Hoang, S.; Bobko, C.; Ortega, A.; Ulm, F.J.: Geomechanics field and laboratory characterization of woodford shale: the next gas play. Proc. SPE Annu. Tech. Conf. Exhib. 4, 2127–2140 (2007)

    Google Scholar 

  12. Cuervo, S.; Adachi, J.; Lombardo, E.: Integration of 1D and 3D mechanical Earth models in oil shale plays. An example from the Vaca Muerta formation (Argentina). In: 52nd U.S. Rock Mechanics Symposium (2018)

  13. Bybee, K.: Mitigating wellbore stability problems of water-based muds. J. Pet. Technol. 54, 61–62 (2002). https://doi.org/10.2118/1002-0061-JPT

    Article  Google Scholar 

  14. Parkash, D.; Deangeli, C.: Wellbore stability analysis in anisotropic shale formations. In: SPE/PAPG Pakistan Section Annual Technical Symposium and Exhibition, pp. 18–20. Society of Petroleum Engineers (2019)

  15. Richard, P.; Stephen, E.; Gary, P.; Donald, L.; Brian, S.: The mechanical earth model concept and its application to high-risk well construction projects. (2007). https://doi.org/10.2523/59128-ms

    Article  Google Scholar 

  16. Al-Zubaidi, N.S.; Al-Neeamy, A.K.: 3D mechanical earth model for Zubair oilfield in southern Iraq. J. Pet. Explor. Prod. Technol. 10, 1729–1741 (2020). https://doi.org/10.1007/s13202-020-00863-y

    Article  Google Scholar 

  17. Hussain, M.; Ahmed, N.: Reservoir geomechanics parameters estimation using well logs and seismic reflection data: insight from Sinjhoro Field, lower Indus Basin. Pak. Arab. J. Sci. Eng. 43, 3699–3715 (2018). https://doi.org/10.1007/s13369-017-3029-6

    Article  Google Scholar 

  18. Nazari Sarem, M.; Riahi, M.A.: Geomechanical unit modeling using seismic and well log data in one of the southwestern Iranian oilfields. J. Pet. Explor. Prod. Technol. 10, 2805–2813 (2020). https://doi.org/10.1007/s13202-020-00962-w

    Article  Google Scholar 

  19. Santarelli, F.J.; Zaho, S.; Burrafato, G.; Zausa, F.; Giacca, D.: wellbore stability analysis made easy and practical. In: IADC/SPE Drilling Conference. Society of Petroleum Engineers (1996)

  20. Blosser, W.R.; Mujica, S.: Assessment of formation damage: a case study for the Cusiana reservoir, Colombia. Proceedings—SPE International Symposium on Formation Damage Control, pp. 327–328 (1994). https://doi.org/https://doi.org/10.2523/27375-ms

  21. Sirat, M.; Ahmed, M.; Zhang, X.: Predicting hydraulic fracturing in a carbonate gas reservoir in Abu Dhabi using 1D mechanical earth model: uncertainty and constraints. In: SPE Middle East Unconventional Resources Conference and Exhibition. Society of Petroleum Engineers (2015)

  22. Liang, L.; Ding, Y.; Liu, X.; Luo, P.: Evaluation and mechanical influence of clay shale hydration using acoustic time-frequency domain characteristics. J. Geophys. Eng. 16, 493–508 (2019). https://doi.org/10.1093/jge/gxz019

    Article  Google Scholar 

  23. Onaisi, A.; Durand, C.; Audibert, A.: Role of hydration state of shales in borehole stability studies. Soc. Pet. Eng. Rock Mech. Pet. Eng. 1994, 275–285 (1994). https://doi.org/10.2523/28062-ms

    Article  Google Scholar 

  24. Barati, P.; Shahbazi, K.; Kamari, M.; Aghajafari, A.: Shale hydration inhibition characteristics and mechanism of a new amine-based additive in water-based drilling fluids. Petroleum. 3, 476–482 (2017). https://doi.org/10.1016/j.petlm.2017.05.003

    Article  Google Scholar 

  25. Morita, N.: Uncertainty . In: SPE annual technical conference and exhibition. Society of Petroleum Engineers (1995)

  26. Rong, X.; Wang, Y.; Forson, K.; Guo, B.; Liu, J.; Wei, M.: The influence of nano-silicon material on clay swelling effect In: Society of Petroleum Engineers—SPE/IATMI Asia Pacific Oil and Gas Conference and Exhibition 2019, APOG 2019. (2019). https://doi.org/https://doi.org/10.2118/196386-ms

  27. Santos, H.; Diek, A.; Roegiers, J.C.; Fontoura, S.: Can shale swelling be (easily) controlled? ISRM Int. Symp. EUROCK 1996, 99–106 (1996)

    Google Scholar 

  28. Roehl, E.A.; Hackett, J.L.: A laboratory technique for screening shale swelling inhibitors. Proceedings of the SPE's Annual Technical Conference and Exhibition (1982). https://doi.org/10.2118/11117-ms https://doi.org/10.2118/11117-ms, September 1982

  29. Cicha-szot, R.; Mroczkowska, M.; Majkrzak, M.; Szpunar, T.; Spectroscopy-attenuated, F.T.I.: Improved wellbore stability prediction by application of swelling pressure. Sca. 1–6 (2014)

  30. Tokle, K.; Horsrud, P.; Bratli, R.K.: Predicting uniaxial compressive strength from log parameters. In: Proceedings of the SPE Annual Technical Conference and Exhibition (1986). https://doi.org/https://doi.org/10.2118/15645-ms

  31. Wei, Y.; Zhao, K.; Hang, C.; Chen, S.; Ding, M.: Experimental study on the creep behavior of recombinant bamboo. J. Renew. Mater. 8, 251–273 (2020). https://doi.org/10.32604/jrm.2020.08779

    Article  Google Scholar 

  32. Wang, S.; Hagan, P.C.; Cao, C.: Rock Testing. In: Advances in Rock-Support and Geotechnical Engineering. pp. 1–60. Elsevier (2016)

  33. Frydman, M.; Restrepo, J.D.; Palacio, J.; Airoldi, C.; Eguia, H.: Reducing drilling risks in highly overpressurized formation: A case history in Nororiente basin, Argentina. Proceedings of the SPE Virtual Latin American and Caribbean Petroleum Engineering Conference 3, pp. 1709–1720 (2007). https://doi.org/https://doi.org/10.2118/108174-ms

  34. Yi, X.: Wellbore stability predictions using mechanical earth model—a case study for Okan Field, offshore Nigeria. In: Proceedings of International Petroleum Technology Conference, pp. 860–872. Society of Petroleum Engineers (2008)

  35. Erling Fjar, P.; Horsrud, A.M.; Raaen, R.; Risnes, R.M.H.: petroleum Related Rock Mechanics, 2nd edn. Elsevier, Amsterdam (2008)

    Google Scholar 

  36. J J Zhang: Applied Petroleum Geomechanics. Gulf Professional Publishing, Houston (2019)

    Google Scholar 

  37. Edwards, S.T.; Meredith, P.G.; Murrell, S.A.F.: An investigation of leak-off test data for estimating in-situ stress magnitudes: application to a basinwide study in the North Sea. In: SPE/ISRM Rock Mechanics in Petroleum Engineering. Society of Petroleum Engineers (1998)

  38. Guerra, C.; Fischer, K.; Henk, A.: Stress prediction using 1D and 3D geomechanical models of a tight gas reservoir—a case study from the Lower Magdalena Valley Basin. Colombia. Geomech. Energy Environ. 19, 100113 (2019). https://doi.org/10.1016/j.gete.2019.01.002

    Article  Google Scholar 

  39. Molaghab, A.; Taherynia, M.H.; Fatemi Aghda, S.M.; Fahimifar, A.: Determination of minimum and maximum stress profiles using wellbore failure evidences: a case study—a deep oil well in the southwest of Iran. J. Pet. Explor. Prod. Technol. 7, 707–715 (2017). https://doi.org/10.1007/s13202-017-0323-5

    Article  Google Scholar 

  40. Blanton, T.L.; Olson, J.E.: Stress magnitudes from logs: effects of tectonic strains and temperature. SPE Reserv. Eval. Eng. 2, 62–68 (1999). https://doi.org/10.2118/54653-PA

    Article  Google Scholar 

  41. Nurhandoko, B.E.: Estimation strategy of subsurface stress Shmin and Shmax in borehole by combining cross-dipole sonic data and seismic rock physics laboratory. In: Presented at the (2019)

  42. Zhang, Y.; Zhang, J.: Lithology-dependent minimum horizontal stress and in-situ stress estimate. Tectonophysics 703–704, 1–8 (2017). https://doi.org/10.1016/j.tecto.2017.03.002

    Article  Google Scholar 

  43. Gholami, R.; Rasouli, V.; Aadnoy, B.; Mohammadi, R.: Application of in situ stress estimation methods in wellbore stability analysis under isotropic and anisotropic conditions. J. Geophys. Eng. 12, 657–673 (2015). https://doi.org/10.1088/1742-2132/12/4/657

    Article  Google Scholar 

  44. Zhang, J.: Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth Sci. Rev. 108, 50–63 (2011). https://doi.org/10.1016/j.earscirev.2011.06.001

    Article  Google Scholar 

  45. Bowers, G.L.: Data : Accounting for Overpressure Mechanisms Besides Undercompaction. Soc. Pet. Eng. SPE 27488, 89–95 (1995)

    Google Scholar 

  46. Ransom, R.C.: A Method For Calculation Pore Pressures From Well Logs. Soc. Petrophys. Well Log Anal. 27, (1986)

  47. Terzaghi, K.; Peck, R.B.: Soil Mechanics in Engineering Practice. In: Journal of Wiley (1948)

  48. Estimation of Formation Pressures from Log-Derived Shale Properties: C. E. Hottman, R.K.J: Abstract. Am. Assoc. Pet. Geol. Bull. 49, 717–722 (1965). https://doi.org/10.1306/A66337E8-16C0-11D7-8645000102C1865D

    Article  Google Scholar 

  49. Saleh, S.; Williams, K.E.; Rizvi, A.: Resistivity-based pore-pressure prediction—pitfalls and solutions. In: SPE Annual Technical Conference and Exhibition, pp. 1–15. Society of Petroleum Engineers (2013)

  50. Velázquez-Cruz, D., Espinosa-Castañeda, G., Díaz-Viera, M.A., Leyte-Guerrero, F.: New methodology for pore pressure prediction using well logs and divergent area. SPE Virtual Latin American and Caribbean Petroleum Engineering Conference 0, (2017). https://doi.org/https://doi.org/10.2118/185557-ms

  51. Eaton, B.A.: The Equation for Geopressure Prediction from well logs. In: Fall Meeting of the Society of Petroleum Engineers of AIME, p. 219. Society of Petroleum Engineers (1975)

  52. Fjaer, E.; Holt, R.M.; Horsrud, P.; Raaen, A.M.; Risnes, R.: Petroleum related rock mechanics. Elsevier (2008)

  53. Moos, D.; Peska, P.; Finkbeiner, T.; Zoback, M.: Comprehensive wellbore stability analysis utilizing quantitative risk assessment. J. Pet. Sci. Eng. 38, 97–109 (2003). https://doi.org/10.1016/S0920-4105(03)00024-X

    Article  Google Scholar 

  54. Chang, C.; Zoback, M.D.; Khaksar, A.: Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng. 51, 223–237 (2006). https://doi.org/10.1016/j.petrol.2006.01.003

    Article  Google Scholar 

  55. Chandrasekhar, E.; Eswara Rao, V.: Wavelet analysis of geophysical well-log data of bombay offshore basin. India Math. Geosci. 44, 901–928 (2012). https://doi.org/10.1007/s11004-012-9423-4

    Article  Google Scholar 

  56. Bowers, G.L.: Determining an appropriate pore-pressure estimation. Strategy (2001). https://doi.org/10.4043/13042-ms

    Article  Google Scholar 

  57. López-Solís, V.; Velazquez-Cruz, D.; Jardinez-Tena, A.; Castañeda, G.E.: Normal resistivity trends for geopressure analysis in mexican offshore wells. In: Offshore Technology Conference. Offshore Technology Conference (2006)

  58. Atashbari, V., Tingay, M.: SPE 150835 Pore pressure prediction in carbonate reservoirs. In: SPE Virtual Latin American and Caribbean Petroleum Engineering Conference , pp. 16–18 (2012)

  59. Constant, W.D.; Bourgoyne, A.T.: Fracture-gradient prediction for offshore wells. SPE Drill. Eng. 3, 136–140 (1988)

    Article  Google Scholar 

  60. Lesage, M.; Hall, P.; Pearson, J.R.A.; Thiercelin, M.J.: Pore-pressure and fracture-gradient predictions. J. Pet. Technol. 43, 652–654 (1991). https://doi.org/10.2118/21607-PA

    Article  Google Scholar 

  61. Wiprut, D.; Zoback, M.; Hanssen, T.-H.; Peska, P.: Constraining the full stress tensor from observations of drilling-induced tensile fractures and leak-off tests: Application to borehole stability and sand production on the Norwegian margin. Int. J. Rock Mech. Min. Sci. 34(365), e1-365.e12 (1997). https://doi.org/10.1016/S1365-1609(97)00157-3

    Article  Google Scholar 

  62. Eaton, B.A.: Fracture gradient prediction and its application in oilfield operations. J. Pet. Technol. 21, 1353–1360 (1969). https://doi.org/10.2118/2163-PA

    Article  Google Scholar 

  63. Santos, H.; da Fontoura, S.A.B.; Gupta, A.; Roegiers, J.C.: Laboratory tests for wellbore stability in deepwater, Brazil. In: Latin American and Caribbean Petroleum Engineering Conference, p. 9. Society of Petroleum Engineers (1997)

  64. Abiddin Erguler, Z.; Ulusay, R.: A simple test and predictive models for assessing swell potential of Ankara (Turkey) Clay. Eng. Geol. 67, 331–352 (2003). https://doi.org/10.1016/S0013-7952(02)00205-3

    Article  Google Scholar 

  65. Bieniawski, Z.T.; Bernede, M.J.: Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16, 138–140 (1979). https://doi.org/10.1016/0148-9062(79)91451-7

    Article  Google Scholar 

  66. Mansouri, H.; Ajalloeian, R.: Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. Sci. 110, 19–27 (2018). https://doi.org/10.1016/j.ijrmms.2018.07.006

    Article  Google Scholar 

  67. Zoback, M.D.: Reservoir Geomechanics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  68. Aadnoy, B.S.; Ong, S.: Introduction to special issue on borehole stability. J. Pet. Sci. Eng. 38, 79–82 (2003). https://doi.org/10.1016/s0920-4105(03)00022-6

    Article  Google Scholar 

  69. Zerwer, A., Yassir, N.A.: Borehole breakout interpretation in the Gulf Coast, offshore Louisiana. In: 1st North American Rock Mechanics Symposium NARMS 1994, pp. 225–232 (1994)

  70. Bell, J.S.; Gough, D.I.: Northeast-southwest compressive stress in Alberta evidence from oil wells. Earth Planet. Sci. Lett. 45, 475–482 (1979). https://doi.org/10.1016/0012-821X(79)90146-8

    Article  Google Scholar 

  71. Gholami, R.; Moradzadeh, A.; Rasouli, V.; Hanachi, J.: Practical application of failure criteria in determining safe mud weight windows in drilling operations. J. Rock Mech. Geotech. Eng. 6, 13–25 (2014). https://doi.org/10.1016/j.jrmge.2013.11.002

    Article  Google Scholar 

Download references

Acknowledgment

This paper authors extend their gratitude to Oil and Natural Gas Corporation Limited (ONGC) and Baker Hughes for their continuous support to make this research work possible and thank ONGC-Mumbai and Centre of Excellence in Well Logging Technology (CEWELL)-Baroda for providing data for this research under the PAN IIT ONGC project. We thank Mr. Priti Prasad Deo, former executive director of CEWELL of ONGC for his continuous support and valuable discussions.

Funding

The Indian Institute of Technology Madras supported this research.

Author information

Authors and Affiliations

Authors

Contributions

1D Mechanical Earth Models are constructed and analyzed by V.A., N.M. did seismic Inversion, and the R.R made log interpretation, the laboratory experiments, and final analysis.

Corresponding author

Correspondence to Venkatesh Ambati.

Ethics declarations

Conflict of interests:

The authors declare that they have no conflict of interest in this study.

Availability of Data

The data used for this study is confidential, provided by ONGC. In this regard, the authors so regret to say that data will not be disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambati, V., Mahadasu, N.B. & Nair, R.R. Reservoir Wellbore Stability Analysis and Weak Zones Identification Using the 1D MEM, Swelling Tests and UCS: A Case Study From Mumbai Offshore, India. Arab J Sci Eng 47, 11101–11123 (2022). https://doi.org/10.1007/s13369-021-05530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05530-w

Keywords

Navigation