Skip to main content
Log in

Modelling of Heat Flow When Thermal Conductivity, Specific Heat Capacity and Density All are a Function of Temperature

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with experimental procedures to determine thermal conductivity, heat capacity, and density of Pb–Sn (60/40) solder alloy between 27 and 280C. The relationship between temperature and these three physical properties was established. An indirect experimental procedure was developed following the Wiedemann Franz Law to determine the thermal conductivity of the material, while direct experimental approaches were used to obtain the specific heat and density values. The heat flow in our sample was analyzed by finite element modeling (FEM). Two different FEM cases for heat flow were analyzed, one with experimentally determined properties, while empirically developed relations were analyzed for the second case. We have also discussed the importance of determining physical properties at regular intervals of temperature for application in FEM, using the empirical relations. Thus, empirical relations can be used to model the high-temperature manufacturing processes like soldering, brazing, welding, and additive manufacturing with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\dot{T}\) :

Rate of change of temperature

\(\rho \) :

Density

\(\rho _\mathrm{elec}\) :

Electrical resistivity

\(\sigma \) :

Electrical conductivity

A :

Cross-sectional area

C :

Heat capacity

\(C_\mathrm{p}\) :

Constant pressure heat capacity

\(C_\mathrm{v}\) :

Constant volume heat capacity

e :

Elementary electron charge

H :

Heat generation in body

I :

Total current

\(I_{i}\) :

Induced current

k :

Thermal conductivity

\(k_\mathrm{B}\) :

Boltzmann constant

L :

Lorenz number

l :

Length of sample

m :

Mass

R :

Resistance of circuit

T :

Temperature

t :

Time

V :

Voltage

\(V_{0}\) :

Volume

References

  1. Free, J..A., Goff, R..P.: Predicting residual stresses in multi-pass weldments with the finite element method. Comput. Struct. 32(2), 365 (1989)

    Article  Google Scholar 

  2. Chen, G., Xu, X.: Experimental and 3D finite element studies of CW laser forming of thin stainless steel sheets. J. Manuf. Sci. Eng. 123, 66 (2001)

    Article  Google Scholar 

  3. Chen, G., Xu, X., Poon, C.C., Tam, A.C.: Experimental and numerical studies on microscale bending of stainless steel with pulsed laser. J. Appl. Mech. 66, 772 (1999)

    Article  Google Scholar 

  4. Zhu, X., Chao, Y.: Effects of temperature-dependent material properties on welding simulation. Comput. Struct. 80, 967–976 (2002)

    Article  Google Scholar 

  5. Silva, B.L., Reinhart, G., Nguyen-Thi, H., Mangelinck-Noël, N., Garcia, A., Spinelli, J.E.: Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn-Bi solder alloy. Mater. Charact. 107, 43 (2015)

    Article  Google Scholar 

  6. Cheng, S., Huang, C.M., Pecht, M.: A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77 (2017)

    Article  Google Scholar 

  7. Monaghan, B.J.: A four-probe dc method for measuring the electrical resistivities of molten metals. Int. J. Thermophys. 20, 677–690 (1999)

    Article  Google Scholar 

  8. Zhao, D., Qian, X., Gu, X., Jajja, S.A., Yang, R.: Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 138, 040802 (2016)

    Article  Google Scholar 

  9. Reiter, M., Hartman, H.: A new steady’ state method for determining thermal conductivity. J. Geophys. Res. 76, 7047 (1971)

    Article  Google Scholar 

  10. Tye, R.P.: The measurement of thermal conductivity by the comparative method. In: Compendium of Thermophysical Property Measurement Methods. Springer, pp. 77–97 (1992)

  11. Pillai, C., George, A.: An improved comparative thermal conductivity apparatus for measurements at high temperatures. Int. J. Thermophys. 12(3), 563 (1991)

    Article  Google Scholar 

  12. Flynn, D.R.: Thermal conductivity of loose-fill materials by a radial-heat-flow method. In: Compendium of Thermophysical Property Measurement Methods. Springer, pp. 33–75 (1992)

  13. Zawilski, B.M., Littleton, R.T.: Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples. Rev. Sci. Instrum. 72, 1770 (2001)

    Article  Google Scholar 

  14. Gspann, T.S., Juckes, S.M., Niven, J.F., Johnson, M.B., Elliott, J.A., White, M.A., Windle, A.H.: High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology. Carbon 114, 160 (2017)

    Article  Google Scholar 

  15. Righini, F., Bussolino, G.C., Rosso, A., Roberts, R.B.: Thermal conductivity by a pulse-heating method: theory and experimental apparatus. Int. J. Thermophys. 11, 629 (1990)

    Article  Google Scholar 

  16. Cahill, D.G., Pohl, R.O.: Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35(8), 4067 (1987)

    Article  Google Scholar 

  17. Kaul, P.B., Day, K.A., Abramson, A.R.: Application of the three omega method for the thermal conductivity measurement of polyaniline. J. Appl. Phys. 101(8), 083507 (2007)

    Article  Google Scholar 

  18. Phylippov, L., Kravchun, S., Tleubaev, A.: Apparatus for measuring thermophysical properties of liquids by AC hot-wire techniques. In: Compendium of Thermophysical Property Measurement Methods. Springer, pp. 375–405 (1992)

  19. Franco, A.: An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Appl. Therm. Eng. 27(14–15), 2495 (2007)

    Article  Google Scholar 

  20. Gustafsson, S.E., Karawacki, E., Khan, M.N.: Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. J. Phys. D Appl. Phys. 12(9), 1411 (1979)

    Article  Google Scholar 

  21. Gustafsson, S.E., Karawacki, E., Chohan, M.A.: Thermal transport studies of electrically conducting materials using the transient hot-strip technique. J. Phys. D Appl. Phys. 19(5), 727 (1986)

    Article  Google Scholar 

  22. Parker, W., Jenkins, R., Butler, C., Abbott, G.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679 (1961)

    Article  Google Scholar 

  23. Nishi, T., Shibata, H., Ohta, H., Waseda, Y.: Thermal conductivities of molten iron, cobalt, and nickel by laser flash method. Metall. Mater. Trans. A 34A, 2801 (2003)

    Article  Google Scholar 

  24. Nishi, T., Ohta, H., Shibata, H., Waseda, Y.: Evaluation of the heat leakage in the thermal diffusivity measurement of molten metals by a laser flash method. Int. J. Thermophys. 24(6), 1735 (2003)

    Article  Google Scholar 

  25. Krupa, P., Malinaric, S.: Using the transient plane source method for measuring thermal parameters of electroceramics. Int. J. Mech. Mechatron. Eng. 8, 629 (2014)

    Google Scholar 

  26. Solórzano, E., Reglero, J., Rodríguez-Pérez, M., Lehmhus, D., Wichmann, M., De Saja, J.: An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int. J. Heat Mass Transf. 51(25–26), 6259 (2008)

    Article  Google Scholar 

  27. Mizuno, N., Kosai, S., Yamasue, E.: Applicability of Wiedemann–Franz law to thermal conductivity of Molten Field’s metal. In: Materials Science Forum (Trans Tech Publ), vol. 985, pp. 1–9 (2020)

  28. Gauthier, R.: The electron is a charged photon with the de Broglie wavelength. In: Unified Field Mechanics: Natural Science Beyond the Veil of Spacetime. World Scientific, pp. 122–130 (2016)

  29. Ocak, Y., Aksöz, S., Maraşlı, N., Çadırlı, E.: Dependency of thermal and electrical conductivity on temperature and composition of Sn in Pb-Sn alloys. Fluid Phase Equilibria 295(1), 60 (2010)

    Article  Google Scholar 

  30. U. power technologies. Efficiency of induction heating. https://ultraflexpower.com/learn-about-induction-heating/efficiency-of-induction-heating/

  31. Baker, H.: Alloy phase diagrams. ASM Handb. 3, 2 (1992)

    Google Scholar 

  32. R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/

  33. ANSYS, I.: Ansys mechanical apdl element reference (2011)

Download references

Acknowledgements

The authors gratefully acknowledge the facilities provided by the Department of Production Engineering and the Center of Innovation, founded by Prof. Bidyut K Bhattacharyya at NIT, Agartala. All the experiments were conducted initially at the Center of Innovation, at NIT Agartala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debtanay Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Dey, V. & Bhattacharyya, B. Modelling of Heat Flow When Thermal Conductivity, Specific Heat Capacity and Density All are a Function of Temperature. Arab J Sci Eng 46, 7649–7659 (2021). https://doi.org/10.1007/s13369-021-05477-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05477-y

Keywords

Navigation