Skip to main content

Advertisement

Log in

Modelling and Performance Analysis of an Electric Vehicle Powered by a PEM Fuel Cell on New European Driving Cycle (NEDC)

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Modelling of a complete polymer electrolyte membrane fuel cell (PEMFC) power systems and performance of the models when subjected to common driving cycle are important research issues. In this study a complete PEMFC system, including air and hydrogen supply equipment, fuel cell stack, electrical system and a 75 kW car, is modelled. An efficiency map of a brand new electric motor is directly imported into the model for it. MATLAB & Simulink tools, based on this mathematical model of PEMFC, are used to establish a dynamic model for a vehicle which is electrically supplied by the fuel cell according to cruise characteristics of New European Driving Cycle (NEDC). Model results show significant instabilities during transient operation regarding the late response of the air supply system. Obtained stack characteristics are similar to those obtained in similar studies conducted previously. Performance results of the car based on energy consumption shows perfect agreement with the results of another model developed for an electric vehicle of the same weight and run also on NEDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\tau_{cp}\) :

Compressor working torque (Nm)

\({\text{C}}_{{\text{p}}}\) :

Specific heat capacity (J/kgK)

\(\tau_{cm}\) :

Compressor torque for oxygen excess working (Nm)

\(T_{{\rm atm}}\) :

Ambient temperature (K)

\(P_{{\rm sm}}\) :

Supply manifold pressure (Pa)

\(P_{{\rm atm}}\) :

Atmospheric pressure (Pa)

\(\omega_{cp}\) :

Compressor speed (rad/s)

\(\eta_{cp}\) :

Compressor efficiency

\(\eta_{cm}\) :

Compressor motor efficiency

\(\dot{m}_{cp}\) :

Compressor airflow (kg/s)

\(\nu_{cm}\) :

Compressor motor voltage (V)

\(\rho_{{\rm a}}\) :

Density of air (kg/m3)

\(V_{{\rm sm}}\) :

Supply manifold volume (m3)

\(R_{{\rm a}}\) :

Gas constant of air (J/kgK)

\(\phi_{{\rm cl}}\) :

Relative humidity of fluid passing through the coolant

\(P_{{\rm sm}}\) :

Supply manifold pressure (Pa)

\(P_{{\rm v,cl}}\) :

Partial vapor pressure of the fluid in the coolant (Pa)

\(P_{{\rm a,cl}}\) :

Partial pressure of dry air in the coolant (Pa)

\(\dot{m}_{v,inj}\) :

Water injected into the fluid (kg/s)

\(M_{v}\) :

Mole mass of water vapor (kg/mol)

\(M_{{\rm a}}\) :

Mole mass of dry air (kg/mol)

\(M_{a,ca,in}\) :

Molar mass of the air entering the cathode (kg/mol)

\(y_{{o_{2} ,ca,in}}\) :

Percentage of oxygen in the air

\(i\) :

Current density (A/cm2)

\(M_{m,dry}\) :

Mole mass of dry air (kg/mol)

\(M_{{O_{2} }}\) :

Mole mass of oxygen (kg/mol)

\(M_{{N_{2} }}\) :

Mole mass of nitrogen (kg/mol)

\(M_{{H_{2} }}\) :

Mole mass of hydrogen (kg/mol)

\(\chi_{{O_{2} ,ca,in}}\) :

Mass fraction of the oxygen entering the cathode

\(n\) :

Cell number of the stack

\(I_{st}\) :

Fuel cell current (A)

\(F\) :

Faraday constant (coulomb/mol)

\(P_{{\rm sat}}\) :

Saturation pressure (Pa)

\(N_{{v,{\text{osmotic}}}}\) :

Electro-osmotic drift of water molecules (mol/s cm2)

\(n_{d}\) :

Electro-osmotic drag coefficient

\(A_{fc}\) :

Fuel cell active area (cm2)

\(N_{v,diff}\) :

Back diffusion of water molecules (mol/s cm2)

\(t_{m}\) :

Membrane thickness (cm)

\(D_{w}\) :

Water diffusion coefficient (cm2/s)

\(E\) :

Open circuit voltage (V)

\(E_{0}\) :

Ideal cell voltage (V)

\(I_{L}\) :

Inductor current (A)

\(V_{c}\) :

Capacitor voltage (V)

\(V_{{{\text{vehicle}}}}\) :

Vehicle speed (m/s)

\(F_{\omega }\) :

Aerodynamic resistance force (N)

\(F_{r}\) :

Rolling resistance force (N)

\(F_{g}\) :

Grade resistance force (N

References

  1. Şenol, R.; Üçgül, İ: Yakıt Pili Teknolojisindeki Gelişmeler ve Taşıtlara Uygulanabilirliğinin İncelenmesi. Mühendis ve Makina. 47, 37–50 (2006)

    Google Scholar 

  2. Chan, C.C.; Wong, Y.S.: Electric vehicles charge forward. IEEE Power Energy Mag. 2, 24–33 (2004)

    Article  Google Scholar 

  3. Emadi, A.; Rajashekara, K.; Williamson, S.S.; Lukic, S.M.: Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE Trans. Veh. Technol. 54, 763–770 (2005)

    Article  Google Scholar 

  4. Kaya, D.; Öztürk, H.; Kayfeci, M.: Hidrojen ve Yakıt Pili Teknolojisi. Umuttepe Yayınları, Kocaeli (2017)

    Google Scholar 

  5. Boettner, D.D.; Paganelli, G.; Guezennec, Y.G.; Moran, M.J.: Proton exchange membrane fuel cell system model for automotive. J. Energy Resour. Technol. 124, 20–27 (2002)

    Article  Google Scholar 

  6. Khaligh, A.; Li, Z.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Trans. Veh. Technol. 59, 2806–2814 (2010)

    Article  Google Scholar 

  7. El Fadil, H.; Giri, F.; Guerrero, J.M.; Tahri, A.: Modeling and nonlinear control of a fuel cell/supercapacitor hybrid energy storage system for electric vehicles. IEEE Trans. Veh. Technol. 63, 3011–3018 (2014)

    Article  Google Scholar 

  8. Hu, X.; Murgovski, N.; Jahannesson, L.M.; Egardt, B.: Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming. IEEE/ASME Trans. Mechatronics. 20, 457–468 (2015)

    Article  Google Scholar 

  9. Matraji, I.; Laghrouche, S.; Jemei, S.; Wack, M.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy. 104, 945–957 (2013)

    Article  Google Scholar 

  10. Ou, K.; Wang, Y.X.; Li, Z.Z.; De Shen, Y.; Xuan, D.J.: Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system. Int. J. Hydrogen Energy. 40, 11686–11695 (2015)

    Article  Google Scholar 

  11. Chen, J.; Liu, Z.; Wang, F.; Ouyang, Q.; Su, H.: Optimal oxygen excess ratio control for PEM fuel cells. IEEE Trans. Control Syst. Technol. 26, 1711–1721 (2018)

    Article  Google Scholar 

  12. Deng, H.; Li, Q.; Cui, Y.; Zhu, Y.; Chen, W.: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems. Int. J. Hydrogen Energy. 44, 19357–19369 (2018)

    Article  Google Scholar 

  13. Matulić, N.; Radica, G.; Barbir, F.; Nižetić, S.: Commercial vehicle auxiliary loads powered by PEM fuel cell. Int. J. Hydrogen Energy. 44, 10082–10090 (2019)

    Article  Google Scholar 

  14. Gasbaoui, B.; Nasri, A.; Abdelkhalek, O.; Ghouili, J.; Ghezouani, A.: Behavior PEM fuel cell for 4WD electric vehicle under different scenario consideration. Int. J. Hydrogen Energy. 42, 535–543 (2017)

    Article  Google Scholar 

  15. Someur, M.A.; Gasbaoui, B.; Abdelkhalek, O.; Ghouili, J.; Toumi, T.; Chakar, A.: Comparative study of energy management strategies for hybrid proton exchange membrane fuel cell four wheel drive electric vehicle. J. Power Sources. 462, 228167–228177 (2020)

    Article  Google Scholar 

  16. Álvarez Fernández, R.; Corbera Caraballo, S.; Beltrán Cilleruelo, F.; Lozano, J.A.: Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renew. Sustain. Energy Rev. 81, 655–668 (2018)

    Article  Google Scholar 

  17. Shen, Di.; Lim, C-C.; Shi, P.: Robust fuzzy model predictive control for energy management systems in fuel cell vehicles. Control Eng. Pract. 98, 104364–104375 (2020).

  18. Wang, X.; Chen, J.; Quan, S.; Wang, Y.; He, H.: Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells. Appl. Energy. 276, 115460–115471 (2020)

    Article  Google Scholar 

  19. Pukrushpan, J.T.: Modeling and Control of Fuel Cell Systems and Fuel Processors. Ph. D. Dissertation, The University of Michigan, (2003).

  20. Adams, J.A.; Yang, W.C.; Oglesby, K.A.; Osborne, K.D.: The development of ford’s P2000 fuel cell vehicle. SAE Technical Paper Series. 2000–01–1061, 1–12 (2000).

  21. Anonymous, 2019. Remy HVH250–090 Electric Motor. Borg Warner, https://cdn.borgwarner.com/docs/default-source/default-document-library/remy-pds---hvh250-090-sheet-euro-pr-3-16.pdf?sfvrsn=a142cd3c_11 (27.12.2019).

  22. Moraal, P.; Kolmanovsky, I.: Turbocharger modeling for automotive control applications. SAE Technical Paper Series. 1999–01–0908, 1–15 (1999).

  23. Çalışkan, A.; Ünal, S.; Orhan, A.: Buck-Boost Dönüştürücü Tasarımı, Modellenmesi ve Kontrolü. Sci. Eng. J. Fırat Univ. 29, 265–268 (2017)

    Google Scholar 

  24. Kiyakli, A.O.; Solmaz, H.: Modeling of an Electric Vehicle with MATLAB/Simulink. Int. J. Autom. Sci. Technol. 2, 9–15 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fırat Işıklı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işıklı, F., Sürmen, A. & Gelen, A. Modelling and Performance Analysis of an Electric Vehicle Powered by a PEM Fuel Cell on New European Driving Cycle (NEDC). Arab J Sci Eng 46, 7597–7609 (2021). https://doi.org/10.1007/s13369-021-05469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05469-y

Keywords

Navigation