Skip to main content

Advertisement

Log in

Decentralized Robust Control of Nonlinear Uncertain Multivariable Systems

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we propose the development of a new strategy for the synthesis of a decentralized robust control for multiple-input–multiple-output (MIMO) nonlinear systems. The proposed method takes into account system’s loop interactions to synthesize a MIMO robust control stabilizing the system facing parametric uncertainties. The use of RGA theory is proposed to define the structure of the robust controller, synthesized by the loop shaping design procedure (LSDP), with the most effective input/output pairing. Then, an extension of an existing transition technique to the nonlinear multivariable case is proposed to decide the equilibrium points. The transition from an equilibrium point to another is ensured by the variation in the scheduling parameter (SP) while monitoring the variation in the gap metric compared to the maximum stability margin of the LSDP. We note that the new developed transition approach exploits during its execution the RGA theory whose purpose is to impose a common input/output pairing. Furthermore, for each equilibrium point a local full-order robust controller is obtained based on the LSDP approach, whose configuration is simplified also by exploiting RGA theory by proposing a selection matrix to deduce a local final robust controller. In this case, the overall decentralized robust control system is obtained by switching between local final robust controllers, where the maximum stability margin is used as an indicator of robustness in terms of stability and precision against parametric uncertainties. The proposed algorithm, for the synthesis of the decentralized robust multivariable control of uncertain nonlinear MIMO systems, is validated for the regulation of a benchmark of type continuous stirred tank reactor in the presence of parametric uncertainties. Moreover, the efficiency of the proposed decentralized robust control is validated on an experimental communicating two tank system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Skogestad, S.; Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, vol. 2. Wiley, New York (2007)

    MATH  Google Scholar 

  2. Garcia-Sanz, M.; Houpis, C.H.: Wind Energy Systems: Control Engineering Design. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  3. Zhang, J.; Mei, X.; Zhang, D.; Jiang, G.; Liu, Q.: Application of decoupling fuzzy sliding mode control with active disturbance rejection for MIMO magnetic levitation system. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 227(2), 213–229 (2013)

    Article  Google Scholar 

  4. Yang, H.; Yin, S.; Kaynak, O.: Neural network-based adaptive fault-tolerant control for Markovian jump systems with nonlinearity and actuator faults. IEEE Trans. Syst. Man Cybern. Syst. (2020)

  5. Yang, H.; Yin, S.: Reduced-order sliding-mode-observer-based fault estimation for Markov jump systems. IEEE Trans. Autom. Control 64(11), 4733–4740 (2019)

    Article  MathSciNet  Google Scholar 

  6. Yang, H.; Yin, S.: Descriptor observers design for Markov jump systems with simultaneous sensor and actuator faults. IEEE Trans. Autom. Control 64(8), 3370–3377 (2018)

    Article  MathSciNet  Google Scholar 

  7. Ghrab, S.; Benamor, A.; Messaoud, H.: Robust discrete-time sliding mode control for systems with time-varying state delay and uncertainties on state and control input. Trans. Inst. Meas. Control 39(9), 1293–1312 (2017)

    Article  Google Scholar 

  8. Aksu, I.O.; Coban, R.: Sliding mode PI control with backstepping approach for MIMO nonlinear crosscoupled tank systems. Int. J. Robust Nonlinear Control 29(6), 1854–1871 (2019)

    Article  Google Scholar 

  9. Taieb, A.; Soltani, M.; Chaari, A.: Parameter optimization of MIMO fuzzy optimal model predictive control by APSO. Complexity (2017). https://doi.org/10.1155/2017/5813192

  10. Abdelwahed, I.B.; Mbarek, A.; Bouzrara, K.: Adaptive MPC based on MIMO ARX-Laguerre model. ISA Trans. 67, 330–347 (2017)

    Article  Google Scholar 

  11. Bristol, E.: On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 11(1), 133–134 (1966)

    Article  Google Scholar 

  12. Kinnaert, M.: Interaction measures and pairing of controlled and manipulated variables for multiple-input multiple-output systems: a survey. J. A 36(4), 15–23 (1995)

    MathSciNet  Google Scholar 

  13. van de Wal, M., & de Jager, B.: Control structure design: A survey. In Proceedings of 1995 American Control Conference-ACC’95, vol. 1, pp. 225–229. IEEE (1995)

  14. Halvarsson, B.: Interaction Analysis in Multivariable Control systems: applications to Bioreactors for Nitrogen Removal. Acta Universitatis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 92. 162 pp. Uppsala. ISBN 978-91-554-7781-3 (2010)

  15. Vadigepalli, R.; Gatzke, E.P.; Doyle, F.J.: Robust control of a multivariable experimental four-tank system. Ind. Eng. Chem. Res. 40(8), 1916–1927 (2001)

    Article  Google Scholar 

  16. Eltantawie, M.A.: Decentralized neuro-fuzzy control for half car with semi-active suspension system. Int. J. Autom. Technol. 13(3), 423–431 (2012)

    Article  Google Scholar 

  17. Kwon, H.Y.; Choi, H.L.: Gain scheduling control of nonlinear systems based on approximate input–output linearization. Int. J. Control Autom. Syst. 12(5), 1131–1137 (2014)

    Article  MathSciNet  Google Scholar 

  18. Wang, Q.; Zhou, B.; Duan, G.R.: Robust gain scheduled control of spacecraft rendezvous system subject to input saturation. Aerosp. Sci. Technol. 42, 442–450 (2015)

    Article  Google Scholar 

  19. Yang, Y.; Yan, Y.: Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerosp. Sci. Technol. 54, 208–217 (2016)

    Article  Google Scholar 

  20. Haj Salah, A.A.; Garna, T.; Ragot, J.; Messaoud, H.: Transition and control of nonlinear systems by combining the loop shaping design procedure and the gap metric theory. Trans. Inst. Meas. Control 38(8), 1004–1020 (2016)

    Article  Google Scholar 

  21. Njabeleke, I.A.; Pannett, R.F.; Chawdhry, P.K.; Burrows, C.R.: Design of H loop-shaping controllers for fluid power systems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 214(3), 483–499 (2000)

    Article  Google Scholar 

  22. Sethi, V.; Song, G.; Franchek, M.A.: Loop shaping control of a model-story building using smart materials. J. Intel. Mater. Syst. Struct. 19(7), 765–777 (2008)

    Article  Google Scholar 

  23. Wang, F.C.; Chen, L.S.; Tsai, Y.C.; Hsieh, C.H.; Yen, J.Y.: Robust loop-shaping control for a nano-positioning stage. J. Vib. Control 20(6), 885–900 (2014)

    Article  Google Scholar 

  24. Benhammou, A.: Contribution l’tude de la commande adaptative dcentralise des systmes interconnects (Doctoral dissertation, Toulouse 3) (1988)

  25. Lunze, J.: Feedback Control of Large Scale Systems. Prentice Hall PTR, New York (1992)

    MATH  Google Scholar 

  26. Gagnon, . Commande algbrique dcentralise et multivariable (Doctoral dissertation, Laval University, Quebec) (1999)

  27. McFarlane, D.C.; Glover, K.: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, vol. 138. Springer, Berlin (1990)

    Book  Google Scholar 

  28. Seborg, D.E.; Mellichamp, D.A.; Edgar, T.F.; Doyle III, F.J.: Process Dynamics and Control. Wiley, New York (2010)

    Google Scholar 

  29. Gu, D.W.; Petkov, P.; Konstantinov, M.M.: Robust Control Design with MATLAB. Springer, New York (2005)

    MATH  Google Scholar 

  30. El-Sakkary, A. K.: THE GAP METRIC FOR UNSTABLE SYSTEMS (Doctoral dissertation, McGill University, Montreal, Canada) (1982)

  31. El-Sakkary, A.: The gap metric: robustness of stabilization of feedback systems. IEEE Trans. Autom. Control 30(3), 240–247 (1985)

    Article  MathSciNet  Google Scholar 

  32. Georgiou, T.T.: On the computation of the gap metric. Syst. Control Lett. 11(4), 253–257 (1988)

    Article  MathSciNet  Google Scholar 

  33. Georgiou, T. T., & Smith, M. C.: (December). Optimal robustness in the gap metric. In Proceedings of the 28th IEEE Conference on Decision and Control, (pp. 2331-2336). IEEE (1989)

  34. Djouadi, S. M.: (December). Robustness in the gap metric and coprime factor perturbations for LTV systems. In: 2007 46th IEEE Conference on Decision and Control (pp. 6400–6405). IEEE. (2007)

  35. Khaki-Sedigh, A.; Moaveni, B.: Control configuration selection for multivariable plants, vol. 391. Springer, New York (2009)

    Book  Google Scholar 

  36. Stilwell, D.J.; Rugh, W.J.: Stability preserving interpolation methods for the synthesis of gain scheduled controllers. Automatica 36(5), 665–671 (2000)

    Article  MathSciNet  Google Scholar 

  37. Reble, M.: Model predictive control for nonlinear continuoustime systems with and without time-delays. (Doctoral dissertation, Institute for Systems Theory and Automatic Control, University of Stuttgart, Germany) (2013)

  38. Leith, D.J.; Leithead, W.E.: Gain-scheduled controller design: an analytic framework directly incorporating non-equilibrium plant dynamics. Int. J. Control 70(2), 249–269 (1998)

    Article  MathSciNet  Google Scholar 

  39. Rugh, W.J.; Shamma, J.S.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MathSciNet  Google Scholar 

  40. Beale, M.H.; Hagan, M.T.; Demuth, H.B.: Neural Network Toolbox. User’s Guide. MathWorks, Natick (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Yousfi.

Appendices

A Local submodels parameters the CSTR

Table 5 Equilibrium points \( ({\varvec{x}}_{eq}^i,{\varvec{u}}_{eq}^i ) \) and their corresponding transfer matrices \( {\varvec{G}}_{eq}^i \) and RGA metric \( \varvec{\varLambda }({\varvec{G}}_{eq}^i) \)
Table 6 Shaped systems \( {\varvec{G}}_{eq,sh}^i \) and and their corresponding maximum stability margins \( \varepsilon _{max}^{i} \)

B Robust Controllers

$$\begin{aligned} \begin{matrix} K_{f,12}^1(s)=\dfrac{170.6 s^3 + 1.407e^4 s^2 + 1.642e^5 s + 9.141e^4}{s^5 + 160.8 s^4 + 7632 s^3 + 9.287e^4 s^2 + 2.23e^5 s + 223}~\\ K_{f,21}^1(s)=\dfrac{3940 s^3 + 3.203e^5 s^2 + 1.746e^6 s + 2.287e^6}{s^5 + 161.3 s^4 + 7712 s^3 + 9.668e^4 s^2 + 2.694e^5 s + 1.115e^5} \\ \end{matrix} \end{aligned}$$
(87)
$$\begin{aligned} \begin{matrix} K_{f,12}^2(s)=\dfrac{138.6 s^3 + 1.215e^4 s^2 + 1.394e^5 s + 6.034e^4}{s^5 + 150.6 s^4 + 6578 s^3 + 7.344e^4 s^2 + 1.428e^5 s + 142.7}\\ K_{f,21}^2(s)=\dfrac{4419 s^3 + 2.823e^5 s^2 + 1.299e^6 s + 1.51e^6}{s^5 + 151.1 s^4 + 6654 s^3 + 7.672e^4 s^2 + 1.795e^5 s + 7.137e^4} \\ \end{matrix} \end{aligned}$$
(88)
$$\begin{aligned} \begin{matrix} K_{f,12}^3(s)=\dfrac{186.9 s^3 + 1.26e^4 s^2 + 1.423e^5 s + 7.786e^4}{s^5 + 149.4 s^4 + 6476 s^3 + 7.659e^4 s^2 + 1.87e^5 s + 187}\\ K_{f,21}^3(s)=\dfrac{3283 s^3 + 2.75e^5 s^2 + 1.458e^6 s + 1.951e^6}{s^5 + 149.9 s^4 + 6550 s^3 + 7.982e^4 s^2 + 2.253e^5 s + 9.348e^4} \\ \end{matrix} \end{aligned}$$
(89)
$$\begin{aligned} \begin{matrix} K_{f,12}^4(s)=\dfrac{130.8 s^3 + 8502 s^2 + 9.43e^4 s + 3.622e^4}{s^5 + 123.5 s^4 + 4533 s^3 + 4.779e^4 s^2 + 8.706e^4 s + 87.01}\\ K_{f,21}^4(s)=\dfrac{3251 s^3 + 1.872e^5 s^2 + 8.069e^5 s + 9.083e^5}{s^5 + 124 s^4 + 4594 s^3 + 5.005e^4 s^2 + 1.109e^5 s + 4.351e^4} \\ \end{matrix} \end{aligned}$$
(90)
$$\begin{aligned} \begin{matrix} K_{f,12}^5(s)=\dfrac{109.1 s^3 + 1.142e^4 s^2 + 1.497e^5 s + 7.407e^4}{s^5 + 165.3 s^4 + 7968 s^3 + 1.008e^5 s^2 + 2.286e^5 s + 228.5}\\ K_{f,21}^5(s)=\dfrac{4041 s^3 + 2.69e^5 s^2 + 1.382e^6 s + 1.854e^6}{s^5 + 165.8 s^4 + 8051 s^3 + 1.048e^5 s^2 + 2.789e^5 s + 1.142e^5} \\ \end{matrix} \end{aligned}$$
(91)
$$\begin{aligned} \begin{matrix} K_{f,12}^6(s)=\dfrac{97.83 s^3 + 8271 s^2 + 9.667e^4 s + 3.426e^4}{s^5 + 131.8 s^4 + 4930 s^3 + 5.176e^4 s^2 + 8.763e^4 s + 87.58}\\ K_{f,21}^6(s)=\dfrac{4064 s^3 + 1.934e^5 s^2 + 7.868e^5 s + 8.584e^5}{s^5 + 132.3 s^4 + 4996 s^3 + 5.422e^4 s^2 + 1.135e^5 s + 4.379e^4} \\ \end{matrix} \end{aligned}$$
(92)

C Local submodels parameters of the CTTS

Table 7 Equilibrium points \( ({\varvec{x}}_{eq}^i,{\varvec{u}}_{eq}^i ) \) and their corresponding transfer matrices \( {\varvec{G}}_{eq}^i \)
Table 8 Shaped systems \( {\varvec{G}}_{sh,eq}^i \) and their corresponding maximum stability margins \( \varepsilon _{max}^{i} \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousfi, M., Ben Njima, C. & Garna, T. Decentralized Robust Control of Nonlinear Uncertain Multivariable Systems. Arab J Sci Eng 46, 9899–9924 (2021). https://doi.org/10.1007/s13369-021-05435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05435-8

Keywords

Navigation