Skip to main content
Log in

Nonlinear Constraint Optimization Based Robust Decentralized PID Controller for a Benchmark CSTR System Using Kharitonov–Hurwitz Stability Analysis

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper exploits the design of a decentralized proportional integral derivative (PID) controller based on nonlinear optimization for a continuously stirred tank reactor system. The basic objective is to attain the design specifications by maintaining both the temperature and concentration. The continuously stirred tank reactor is modeled to a first-order plus dead time system by designing a decoupler. The proposed PID controller is designed on the basis of fundamentals of nonlinear optimization. Further, the overshoot is bounded with constraints on the maximum closed-loop amplitude ratio. The control algorithm is designed for decoupled systems to reduce the loop interactions and attain the servo response. The robust stability is analyzed by considering multiplicative input as well as output uncertainties, while stability is verified with the Kharitonov–Hurwitz theorem. A concise comparison is made between the proposed technique with existing methods. It is envisaged that the proposed control algorithm exhibits better servo and regulatory responses compared to the existing techniques. Furthermore, the efficacious nature of the proposed control scheme is validated by considering a wide range of closed-loop amplitude ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Wei, W.: Adaptive-like control methodologies for a CSTR system with dynamic actuator constraints. J. Process Control 13(6), 525–537 (2003)

    Article  MathSciNet  Google Scholar 

  2. Czeczot, J.: Balance-based adaptive control methodology and its application to the non-isothermal CSTR. Chem. Eng. Process. 45(5), 359–371 (2006)

    Article  Google Scholar 

  3. Favache, A.; Dochain, D.: Thermodynamics and chemical systems stability: the CSTR case study revisited. J. Process Control 19(3), 371–379 (2009)

    Article  Google Scholar 

  4. Chang, W.-D.: Nonlinear CSTR control system design using an artificial bee colony algorithm. Simul. Model. Pract. Theory 31, 1–9 (2013)

    Article  Google Scholar 

  5. Seki, H.; Naka, Y.: Optimizing control of CSTR/distillation column processes with one material recycle. Ind. Eng. Chem. Res. 47(22), 8741–8753 (2008)

    Article  Google Scholar 

  6. Li, D.-J.: Neural network control for a class of continuous stirred tank reactor process with dead-zone input. Neurocomputing 131, 453–459 (2014)

    Article  Google Scholar 

  7. Ballesteros-Moncada, H.; Herrera-López, E.J.; Anzurez-Marín, J.: Fuzzy model-based observers for fault detection in CSTR. ISA Trans. 59, 325–333 (2015)

    Article  Google Scholar 

  8. Estévez-Sánchez, K.H.; Sampieri-Croda, A.; García-Alvarado, M.A.; Ruiz-López, I.I.: Design of multiloop pi controllers based on quadratic optimal approach. ISA Trans. 70, 338–347 (2017)

    Article  Google Scholar 

  9. Alshammari, O.; Mahyuddin, M.N.; Jerbi, H.D.: An advanced PID based control technique with adaptive parameter scheduling for a nonlinear CSTR plant. IEEE Access 7, 158085–158094 (2019)

    Article  Google Scholar 

  10. Tavoosi, J.: An experimental study on inverse adaptive neural fuzzy control for nonlinear systems. Int. J. Knowl-based Intell. Eng. Syst. 24(2), 135–143 (2020)

    Google Scholar 

  11. Dombi, J.; Abrar, H.: A new approach to fuzzy control using the distending function. J. Process Control 86, 16–29 (2020)

    Article  Google Scholar 

  12. Salahshour, E.; Malekzadeh, M.; Gordillo, F.; Ghasemi, J.: Quantum neural network-based intelligent controller design for CSTR using modified particle swarm optimization algorithm. Trans. Inst. Meas. Control. 41(2), 392–404 (2019)

    Article  Google Scholar 

  13. Khanduja, N.; Bhushan, B.; Mishra, S.: Control of CSTR using firefly and hybrid firefly-biogeography based optimization (bbffo) algorithm. J. Inf. Optim. Sci. 41(6), 1443–1452 (2020)

    Google Scholar 

  14. Zerari, N.; Chemachema, M.: Robust adaptive neural network prescribed performance control for uncertain CSTR system with input nonlinearities and external disturbance. Neural Comput. Appl. 32(14), 10541–10554 (2020)

    Article  Google Scholar 

  15. Zhou, W.; Yi, J.; Yao, L.; Chen, G.: Event-triggered optimal control for the continuous stirred tank reactor system. IEEE Trans. Artif. Intell. 3(2), 228–237 (2021)

    Article  Google Scholar 

  16. Marin, A.M.C.A.; Jimenez, J.A.; et al.: Tuning multivariable optimal PID controller for a continuous stirred tank reactor using an evolutionary algorithm. IEEE Lat. Am. Trans. 16(2), 422–427 (2018)

    Article  Google Scholar 

  17. Zhou, W.; Liu, H.; He, H.; Yi, J.; Li, T.: Neuro-optimal tracking control for continuous stirred tank reactor with input constraints. IEEE Trans. Ind. Inf. 15(8), 4516–4524 (2018)

    Article  Google Scholar 

  18. Wang, G.; Jia, Q.-S.; Qiao, J.; Bi, J.; Zhou, M.C.: Deep learning-based model predictive control for continuous stirred-tank reactor system. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3643–3652 (2020)

    Article  MathSciNet  Google Scholar 

  19. Begum, K.G.: Coot bird optimization algorithm for the temperature control of continuous stirred tank reactor process. Asia-Pacific J. Chem. Eng. 18, e2787 (2022)

    Article  Google Scholar 

  20. Saini, P.; Thakur, P.: H-infinity based robust temperature controller design for a non-linear systems. Wireless Personal Commun. 126, 1–29 (2022)

    Article  Google Scholar 

  21. Le, B.N.; Wang, Q.G.; Lee, T.H.: A graphical approach to computing loop gain margins for TITO systems. Trans. Inst. Meas. Control 36(5), 600–603 (2014)

    Article  Google Scholar 

  22. Mutlu, A.; Yildirim, U.; Soylemez, M.T.: Achieving diagonal dominance for parameter uncertain TITO systems using static diagonal controllers. IFAC-PapersOnLine 48(14), 271–277 (2015)

    Article  Google Scholar 

  23. Lengare, M.J.; Chile, R.H.; Waghmare, L.M.: Design of decentralized controllers for MIMO processes. Comput. Electric. Eng. 38(1), 140–147 (2012)

    Article  Google Scholar 

  24. Besta, C.S.; Chidambaram, M.: Improved decentralized controllers for stable systems by IMC method. Indian Chem. Eng. 60(4), 418–437 (2018)

    Article  Google Scholar 

  25. Lakshmanaprabu, S.K.; Elhoseny, M.; Shankar, K.: Optimal tuning of decentralized fractional order PID controllers for TITO process using equivalent transfer function. Cognit. Syst. Res. 58, 292–303 (2019)

    Article  Google Scholar 

  26. Xu, J.; Wang, W.; Zhang, H.: Stabilization of discrete-time multiplicative-noise system under decentralized controllers. IEEE Trans. Autom. Control 67(10), 5448–55 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Briones, O.; Alarcon, R.; Rojas, A.J.; Sbarbaro, D.: Tuning generalized predictive PI controllers for process control applications. ISA Trans. 119, 184–195 (2022)

    Article  Google Scholar 

  28. Anbu, S.; Jaya, N.: Design of gain scheduling adaptive control for continuous stirred tank reactor. Int. J. Autom. Control 8(2), 141–157 (2014)

    Article  Google Scholar 

  29. Govind, K.A.; Mahapatra, S.: Design of decentralized PI/PID control algorithm for a benchmark continuously stirred tank reactor system using frequency domain specifications. International Journal of Modelling, Identification and Control, to be published, https://doi.org/10.1504/IJMIC.2023.10054671.

  30. Tavakoli, S.; Griffin, I.; Fleming, P.J.: Tuning of decentralised PI (PID) controllers for TITO processes. Control Eng. Pract. 14(9), 1069–1080 (2006)

    Article  Google Scholar 

  31. Edet, E.; Katebi, R.: On fractional-order PID controllers. IFAC-PapersOnLine 51(4), 739–744 (2018)

    Article  Google Scholar 

  32. Vilanova, R.: IMC based robust PID design: tuning guidelines and automatic tuning. J. Process Control 18(1), 61–70 (2008)

    Article  Google Scholar 

  33. Wang, Q.-G.; Huang, B.; Guo, X.: Auto-tuning of TITO decoupling controllers from step tests. ISA Trans. 39(4), 407–418 (2000)

    Article  Google Scholar 

  34. Albertos, P.; Antonio, Sala: Multivariable control systems: an engineering approach. Springer Science & Business Media, USA (2006)

  35. Bequette, B.W.: Process control: modelling, design and simulation. Prentice Hall Professional, Hoboken (2003)

    Google Scholar 

  36. Liptak, B.G.; Lipták, B.G.: Process measurement and analysis, vol. 20. CRC Press Boca Raton, USA (2003)

    MATH  Google Scholar 

  37. Achu Govind, K.R.; Mahapatra, S.; Mahapatro, S.R.: A comparative analysis of various decoupling techniques using frequency domain specifications. In 2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP), pp. 1–6. IEEE, (2023)

  38. Achu Govind, K.R.; Mahapatra, S.: Design of PI/PID control algorithm for a benchmark heat exchanger system using frequency domain specifications. In 2022 IEEE International Power and Renewable Energy Conference (IPRECON), pp. 1–5. IEEE, (2022)

  39. Wuhua, H.; Xiao, G.; Li, X.: An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes. ISA Trans. 50(2), 268–276 (2011)

    Article  Google Scholar 

  40. Achu Govind, K.R.; Mahapatra, S.: Frequency domain specifications based robust decentralized PI/PID control algorithm for benchmark variable-area coupled tank systems. Sensors 22(23), 9165 (2022)

    Article  Google Scholar 

  41. Nath, U.M.; Datta, S.; Dey, C.: Centralized auto-tuned IMC-PI controllers for industrial coupled tank process with stability analysis. In 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), pp 296–301. IEEE, (2015)

  42. Krishnamurthy, V.; Seshadri, V.: Model reduction using the routh stability criterion. IEEE Trans. Autom. Control 23(4), 729–731 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the work.

Corresponding author

Correspondence to Subhasish Mahapatra.

Ethics declarations

Conflict of interest

There is no conflict of interest in this work.

Appendices

Appendix A

The open-loop transfer function is given by Eq. (23)

$$\begin{aligned} {\mathcal {G}}(s){{\mathcal {C}}}(s)=\frac{{\mathcal {K}}_{\mathcal{C}\mathcal{L}} {\mathcal {K}}_{\mathcal{P}\mathcal{L}}({\mathcal {T}}_{{\mathcal {I}}}{\mathcal {T}}_{{\mathcal {D}}}s^{2} +{\mathcal {T}}_{{\mathcal {I}}}s+1)e^{-{\Phi }s}}{{\mathcal {T}}_{{\mathcal {I}}}s({\mathcal {T}}s+1)} \end{aligned}$$
(74)

As solving a third-order system is quite complicated, the model is reduced by the Routh stability criterion model reduction method. The transfer function of the reduced-order model can be obtained from the Routh array as reported in [42] and is given as

$$\begin{aligned} {\mathcal {G}}(s){{\mathcal {C}}}(s)=\frac{{\mathcal {K}}_1s+2{\mathcal {K}}_{\mathcal{C}\mathcal{L}} {\mathcal {K}}_{\mathcal{P}\mathcal{L}}(2{\mathcal {T}}_D-\Phi )}{{\mathcal {K}}_2s} \end{aligned}$$
(75)

where

$$\begin{aligned} {\mathcal {K}}_1= & {} 4{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}} {\mathcal {T}}_{{\mathcal {I}}}{\mathcal {T}}_{{\mathcal {D}}}-2{\mathcal {K}}_{\mathcal{C}\mathcal{L}} {\mathcal {K}}_{\mathcal{P}\mathcal{L}}\Phi {\mathcal {T}}_{{\mathcal {I}}}\nonumber \\{} & {} +{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}}\Phi ^2 \nonumber \\ {\mathcal {K}}_2= & {} (2{\mathcal {T}}_{{\mathcal {D}}}-\Phi )(2{\mathcal {T}} {\mathcal {T}}_{{\mathcal {I}}}+\Phi {\mathcal {T}}_{{\mathcal {I}}})s^2 +2{\mathcal {T}}_{{\mathcal {I}}}(2{\mathcal {T}}_{{\mathcal {D}}}-\Phi ) \nonumber \\{} & {} 1+{\mathcal {G}}(s){\mathcal {C}}(s)=0 \end{aligned}$$
(76)

Substituting Eq. (81) in (76)

$$\begin{aligned} s^2+(\beta )s+\frac{2{\mathcal {K}}_{\mathcal{C}\mathcal{L}} {\mathcal {K}}_{\mathcal{P}\mathcal{L}}(2{\mathcal {T}}_{{\mathcal {D}}}-\Phi )}{(2{\mathcal {T}}_{{\mathcal {D}}}-\Phi )(2{\mathcal {T}}{\mathcal {T}}_{{\mathcal {I}}} +\Phi {\mathcal {T}}_{{\mathcal {I}}})}=0 \end{aligned}$$
(77)

where

$$\begin{aligned} \beta =\frac{(2{\mathcal {T}}_{{\mathcal {I}}}(2{\mathcal {T}}_{{\mathcal {D}}}-\Phi ) +4{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}} {\mathcal {T}}_{{\mathcal {I}}}{\mathcal {T}}_{{\mathcal {D}}} -2{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}} \Phi {\mathcal {T}}_{{\mathcal {I}}}+{\mathcal {K}}_{\mathcal{C}\mathcal{L}} {\mathcal {K}}_{\mathcal{P}\mathcal{L}}\Phi ^2)}{(2{\mathcal {T}}_{{\mathcal {D}}} -\Phi )(2{\mathcal {T}}{\mathcal {T}}_{{\mathcal {I}}}+\Phi {\mathcal {T}}_{{\mathcal {I}}})} \end{aligned}$$

As Eq. (82) is of the form \(s^2+2\zeta \omega _n s+\omega _n ^2\), it can be simplified as

$$\begin{aligned} \omega _n= & {} \sqrt{\frac{2{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}}}{(2{\mathcal {T}}{\mathcal {T}}_{{\mathcal {I}}}+\Phi {\mathcal {T}}_{{\mathcal {I}}})}} \end{aligned}$$
(78)
$$\begin{aligned} \zeta= & {} \frac{2{\mathcal {T}}_{{\mathcal {I}}}(2{\mathcal {T}}_{{\mathcal {D}}}-\Phi )+(4{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}}{\mathcal {T}} _{{\mathcal {I}}}{\mathcal {T}}_{{\mathcal {D}}}-2{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}}\Phi {\mathcal {T}}_{{\mathcal {I}}}+{\mathcal {K}} _{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}}\Phi ^2)}{2(2{\mathcal {T}}_{{\mathcal {D}}}-\Phi )\sqrt{(2{\mathcal {T}}{\mathcal {T}}_{{\mathcal {I}}} +\Phi {\mathcal {T}}_{{\mathcal {I}}})}\sqrt{2{\mathcal {K}}_{\mathcal{C}\mathcal{L}}{\mathcal {K}}_{\mathcal{P}\mathcal{L}}} } \end{aligned}$$
(79)

The model specified in Eq. (81) can be approximated as second-order model. Hence, closed-loop resonant frequency, maximum overshoot, resonant peak and bandwidth are given by

$$\begin{aligned} {\mathcal {M}}_r= & {} \frac{1}{2\zeta \sqrt{1-\zeta ^2}} \nonumber \\ {\mathcal {M}}_p= & {} e^{-\frac{\zeta \pi }{\sqrt{1-\zeta ^2}}} \omega _c=\sqrt{1-2\zeta ^2+\sqrt{2-4\zeta ^2+4\zeta ^4}} \end{aligned}$$
(80)

The relation between damping ratio and phase margin is given as

$$\begin{aligned} \sigma _{{\mathcal {M}}}=tan^{-1}\frac{2\zeta }{\sqrt{-2\zeta ^2+\sqrt{1+4\zeta ^4}}} \end{aligned}$$

The frequency domain specifications of the second-order system is shown in Fig. 29.

Fig. 29
figure 29

Frequency domain specifications

Appendix B: Stability Analysis

1.1 Lower Region

Table 6 Hurwitz matrix and row reduced Hurwitz matrix—Lower region

The FOPDT model of the plant

$$\begin{aligned} {\mathcal {A}}(s)=\begin{bmatrix} \frac{1.183}{0.315s+1}e^{-0.6412s} &{} 1\\ 1 &{} \frac{0.0016}{0.2856s+1}e^{-2.357s} \end{bmatrix} \end{aligned}$$
(81)

The designed PID controller is

$$\begin{aligned} {\mathcal {C}}(s)=\begin{bmatrix} 0.048+\frac{0.33}{s}+0.0575s &{} 0\\ 0 &{} 0.033+\frac{45.8}{s}+0.095s \end{bmatrix}\nonumber \\ \end{aligned}$$
(82)

Hence, as per Eq. (45), the open-loop transfer function can be obtained as

$$\begin{aligned} {\mathcal {W}}_{0}(s)= & {} {\mathcal {C}}(s)* {\mathcal {A}}(s) \nonumber \\= & {} \begin{bmatrix} 0.048+\frac{0.33}{s}+0.0575s &{} 0\\ 0 &{} 0.033+\frac{45.8}{s}+0.095s \end{bmatrix} * \nonumber \\{} & {} \begin{bmatrix} \frac{1.183}{0.315s+1}e^{-0.6412s} &{} 1\\ 1 &{} \frac{0.0016}{0.2856s+1}e^{-2.357s} \end{bmatrix} \end{aligned}$$
(83)
Table 7 Hurwitz matrix and row reduced Hurwitz matrix—Middle region
Table 8 Hurwitz matrix and row reduced Hurwitz matrix—Higher region

where the time delays can be expressed by neglecting the higher order terms as \(e^{-0.6412s}=1-0.641269s\) and \( e^{-2.357s} = 1-2.357s\). Further, Eqs. (81) and (83) can be rearranged as

$$\begin{aligned} {\mathcal {A}}(s)= & {} \begin{bmatrix} \frac{1.183-0.758s}{0.315s+1} &{} 1 \\ 1 &{}\frac{0.0016-0.0038s}{0.2856s+1} \end{bmatrix} \nonumber \\ {\mathcal {W}}_{0}(s)= & {} \begin{bmatrix} \frac{0.0575s^2+0.048s+0.33}{s} &{} 0 \\ 0 &{} \frac{0.095s^2+0.033s+45.8}{s} \end{bmatrix} \nonumber \\{} & {} * \begin{bmatrix} \frac{1.183-0.758s}{0.315s+1} &{} 1 \\ 1 &{}\frac{0.0016-0.0038s}{0.2856s+1} \end{bmatrix} \end{aligned}$$
(84)
$$\begin{aligned} {\mathcal {W}}_{0}(s)= & {} \begin{bmatrix} \frac{-0.043s^3+0.032s^2-0.193s+0.4}{0.315s^2+s} &{} \frac{0.0575s^2+0.048s+0.33}{s} \\ \frac{0.095s^2+0.033s+45.8}{s} &{} \frac{-0.00035s^3+0.0014s^2-0.17s+0.073}{0.2856s^2+s} \end{bmatrix}\nonumber \\ \end{aligned}$$
(85)

As described in Eq. (46),

$$\begin{aligned} det[I+{\mathcal {C}}(s){\mathcal {A}}(s)]=0 \end{aligned}$$
(86)

On substituting, Equations (85) into (86), the characteristics Equation can be obtained as

$$\begin{aligned}{} & {} 0.0004764s^6+0.01632s^5+0.01856s^4+1.29s^3\nonumber \\{} & {} \quad +4.54s^2+10.9s+15.08=0 \end{aligned}$$
(87)

The four Kharitonov polynomials are derived from Eqs. (505152)–(53) as

$$\begin{aligned} {\mathcal {K}}^1(s)= & {} s^6+0.6s^5+0.25s^4+0.08s^3\nonumber \\{} & {} +0.013s^2+0.009s+0.003 \end{aligned}$$
(88)
$$\begin{aligned} {\mathcal {K}}^2(s)= & {} s^6+0.88s^5+0.37s^4+0.085s^3 \nonumber \\{} & {} +0.012s^2+0.005s+0.0038 \end{aligned}$$
(89)
$$\begin{aligned} {\mathcal {K}}^3(s)= & {} s^6+0.72s^5+0.37s^4+0.1s^3\nonumber \\{} & {} +0.013s^2+0.001s+0.0038 \end{aligned}$$
(90)
$$\begin{aligned} {\mathcal {K}}^4(s)= & {} s^6+0.72s^5+0.25s^4+0.07s^3\nonumber \\{} & {} +0.013s^2+0.01s+0.000026 \end{aligned}$$
(91)

The Hurwitz matrix and the row reduced Hurwitz matrices for the Kharitonov polynomials described in Eqs. (888990)–(91) are given by Table 6. The elements in the matrix is positive, and there is no sign change. The positive values of the diagonal elements are verified, and the proposed controller is robust stable.

1.1.1 Middle Region

Similarly, Table 7 presents the Hurwitz matrix and the row reduced Hurwitz matrix for the Kharitonov polynomials for middle region. The positive values of the diagonal elements are verified, and the proposed controller is robust stable.

1.1.2 Higher Region

Subsequently, the Hurwitz matrix and the row reduced Hurwitz matrix for the Kharitonov polynomials for higher region is presented in Table 8. The positive values of the diagonal elements are verified and the proposed controller is robust stable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achu Govind, K.R., Mahapatra, S. & Mahapatro, S.R. Nonlinear Constraint Optimization Based Robust Decentralized PID Controller for a Benchmark CSTR System Using Kharitonov–Hurwitz Stability Analysis. Arab J Sci Eng 48, 15377–15402 (2023). https://doi.org/10.1007/s13369-023-08076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08076-1

Keywords

Navigation