Skip to main content

Advertisement

Log in

Enhanced Clustering and Intelligent Mobile Sink Path Construction for an Efficient Data Gathering in Wireless Sensor Networks

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Energy utilization of sensor nodes is a significant challenge in wireless sensor network (WSN). Increasing the energy efficiency of the WSN is a considerable aspect of concern, as higher energy consumption of sensor nodes decreases the existence of the network. Therefore, the energy utilization of sensor nodes plays an essential role in improving the lifetime of the WSN. Many existing methods use static sinks and multi-hop routing for data gathering that can cause an energy-hole problem and inadequate data gathering. Recent studies show that clustering can minimize energy usage of sensor nodes and mobile data collector (MDC) is used to gather sensor data by regularly visiting the nodes to avoid a hotspot or energy-hole problem. Thus, the use of enhanced clustering approach and MDC can improve the data gathering efficiency and cut down the energy consumption of the WSN. In this study, we have developed a JayaX with local search module-based cluster head selection (JayaX-LSM-CHS) approach and cluster formation method and adopted an ant colony optimization (ACO)-based algorithm for an efficient data gathering. The performance of the proposed framework (PF) is validated and compared with the state-of-the-art algorithms, namely dynamic clustering with ant colony optimization (DC-ACO), improved clustering with particle swarm optimization (IC-PSO), and LEACH protocol. The experimental results indicate that the PF significantly enhances the lifetime of the WSN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  2. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Indu. Inf. 14(11), 4724–4734 (2018)

    Article  Google Scholar 

  3. Boubiche, D.E.; Pathan, A.S.; Lloret, J.; Zhou, H.; Hong, S.; Amin, S.O.; Feki, M.A.: Advanced industrial wireless sensor networks and intelligent IoT. IEEE Commun. Maga. 56(2), 14–15 (2018)

    Article  Google Scholar 

  4. Lin, Y.W.; Lin, Y.B.; Yang, M.T.; Lin, J.H.: ArduTalk: an Arduino network application development platform based on IoTtalk. IEEE Syst. J. 13(1), 468–476 (2017)

    Article  Google Scholar 

  5. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Fut. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  6. Rault, T.; Bouabdallah, A.; Challal, Y.: Energy efficiency in wireless sensor networks: a top-down survey. Comput. Netw. 67, 104–122 (2014)

    Article  Google Scholar 

  7. Bello, O.; Zeadally, S.: Intelligent device-to-device communication in the internet of things. IEEE Syst. J. 10(3), 1172–1182 (2014)

    Article  Google Scholar 

  8. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  9. Akkaya, K.; Younis, M.: A survey on routing protocols for wireless sensor networks. Ad Hoc Net. 3(3), 325–349 (2005)

    Article  Google Scholar 

  10. Rao, P.S.; Jana, P.K.; Banka, H.: A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wirel. Netw. 23(7), 2005–2020 (2017)

    Article  Google Scholar 

  11. Gupta, G.P.; Jha, S.: Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony search based metaheuristic techniques. Eng. Appl. Artif. Intell. 68, 101–109 (2018)

    Article  Google Scholar 

  12. Hacioglu, G.; Kand, V.F.; Sesli, E.: Multi objective clustering for wireless sensor networks. Expert Syst. Appl. 59, 86–100 (2016)

    Article  Google Scholar 

  13. Kaswan, A.; Singh, V.; Jana, P.K.: A multi-objective and PSO based energy efficient path design for mobile sink in wireless sensor networks. Perv. Mob. Comput. 46, 122–136 (2018)

    Article  Google Scholar 

  14. Mehrabi, A.; Kim, K.: General framework for network throughput maximization in sink-based energy harvesting wireless sensor networks. IEEE Trans. Mob. Comput. 16(7), 1881–1896 (2016)

    Article  Google Scholar 

  15. Wang, J.; Cao, Y.; Li, B.; Kim, H.J.; Lee, S.: Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Fut. Gener. Comput. Syst. 76, 452–457 (2017)

    Article  Google Scholar 

  16. Kumar, P.; Amgoth, T.; Annavarapu, C.S.: ACO-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Appl. Soft Comput. 69, 528–540 (2018)

    Article  Google Scholar 

  17. Heinzelman, WR., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd annual Hawaii international conference on system sciences, pp 10 (2000)

  18. Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  19. Younis, O.; Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mob. Comput. 3(4), 366–379 (2004)

    Article  Google Scholar 

  20. Lindsey, S.; Raghavendra, C.S.: PEGASIS: power-efficient gathering in sensor information systems. Proc., IEEE Aerosp. Conf. 3, 3 (2002)

    Google Scholar 

  21. Kumar, N., Kaur, J.: Improved leach protocol for wireless sensor networks. In: 7th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1–5 (2011)

  22. Xiangning, F., Yulin, S.: Improvement on LEACH protocol of wireless sensor network. In: International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), pp 260–264 (2007)

  23. Faheem, M.; Abbas, M.Z.; Tuna, G.; Gungor, V.C.: EDHRP: energy efficient event driven hybrid routing protocol for densely deployed wireless sensor networks. J. Netw. Comput. Appl. 58, 309–326 (2015)

    Article  Google Scholar 

  24. Faheem, M.; Butt, R.A.; Raza, B.; Ashraf, M.W.; Ngadi, M.A.; Gungor, V.C.: A multi-channel distributed routing scheme for smart grid real-time critical event monitoring applications in the perspective of Industry 4.0. Int. J. Ad Hoc Ubiquit. Comput. 32(4), 236–256 (2019)

    Article  Google Scholar 

  25. Kuila, P.; Gupta, S.K.; Jana, P.K.: A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm Evolut. Comput. 12, 48–56 (2013)

    Article  Google Scholar 

  26. Tillett, J., Rao, R., Sahin, F.: Cluster-head identification in ad hoc sensor networks using particle swarm optimization. In: IEEE International Conference on Personal Wireless Communications, pp 201–205 (2002)

  27. Latiff, N.A., Tsimenidis, C.C., Sharif, B.S.: Energy-aware clustering for wireless sensor networks using particle swarm optimization. In: IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, pp 1–5 (2007)

  28. Rao, P.S.; Banka, H.: Energy efficient clustering algorithms for wireless sensor networks: novel chemical reaction optimization approach. Wirel. Netw. 23(2), 433–452 (2017)

    Article  Google Scholar 

  29. Faheem, M.; Gungor, V.C.: Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Appl. Soft Comput. 68, 910–922 (2018)

    Article  Google Scholar 

  30. Ali, H.; Tariq, U.U.; Hussain, M.; Lu, L.; Panneerselvam, J.; Zhai, X.: ARSH-FATI a novel metaheuristic for cluster head selection in wireless sensor networks. IEEE Syst. J. (2020). https://doi.org/10.1109/JSYST.2020.2986811

  31. Yogarajan, G.; Revathi, T.: Improved cluster based data gathering using ant lion optimization in wireless sensor networks. Wirel. Pers. Commun. 98(3), 2711–2731 (2018)

    Article  Google Scholar 

  32. Krishnan, M.; Yun, S.; Jung, Y.M.: Dynamic clustering approach with ACO-based mobile sink for data collection in WSNs. Wirel. Netw. 25(8), 4859–4871 (2019)

    Article  Google Scholar 

  33. Krishnan, M., Jung, Y.M., Yun, S.: An improved clustering with particle swarm optimization-based mobile sink for wireless sensor networks. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp 1024–1028 (2018)

  34. Krishnan, M.; Yun, S.; Jung, Y.M.: Enhanced clustering and ACO-based multiple mobile sinks for efficiency improvement of wireless sensor networks. Comput. Netw. 160, 33–40 (2019)

    Article  Google Scholar 

  35. Wang, J.; Gao, Y.; Zhou, C.; Sherratt, S.; Wang, L.: Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs. Comput., Mater. Cont. 62(2), 695–711 (2020)

    Google Scholar 

  36. Wang, J.; Ju, C.; Gao, Y.; Sangaiah, A.K.; Kim, G.: A PSO based energy efficient coverage control algorithm for wireless sensor networks. Comput. Mater. Cont. 56(3), 433–446 (2018)

    Google Scholar 

  37. Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.J.: An enhanced PEGASIS algorithm with mobile sink support for wireless sensor networks. Wirel. Commun. Mob. Comput. 2018, 9 (2018). https://doi.org/10.1155/2018/9472075

  38. Wang, J.; Gao, Y.; Liu, W.; Wu, W.; Lim, S.J.: An asynchronous clustering and mobile data gathering schema based on timer mechanism in wireless sensor networks. Comput., Mater. Cont. 58(3), 711–725 (2019)

    Google Scholar 

  39. Wang, J.; Gu, X.; Liu, W.; Sangaiah, A.K.; Kim, H.J.: An empower Hamilton loop based data collection algorithm with mobile agent for WSNs. Hum.-Centr. Comput. Inf. Sci. 9(1), 18 (2019)

    Article  Google Scholar 

  40. Rao, R.: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Indu. Eng. Comput. 7(1), 19–34 (2016)

    Google Scholar 

  41. Aslan, M.; Gunduz, M.; Kiran, M.S.: JayaX: Jaya algorithm with xor operator for binary optimization. Appl. Soft Comput. 82, 105576 (2019)

    Article  Google Scholar 

  42. Cinar, A.C.; Kiran, M.S.: Similarity and logic gate-based tree-seed algorithms for binary optimization. Comput. Indu. Eng. 115, 631–646 (2018)

    Article  Google Scholar 

  43. Kashan, M.H.; Nahavandi, N.; Kashan, A.H.: DisABC: a new artificial bee colony algorithm for binary optimization. Appl. Soft Comput. 12(1), 342–352 (2012)

    Article  Google Scholar 

  44. Zhang, X.; Wu, C.; Li, J.; Wang, X.; Yang, Z.; Lee, J.M.; Jung, K.H.: Binary artificial algae algorithm for multidimensional knapsack problems. Appl. Soft Comput. 43, 583–595 (2016)

    Article  Google Scholar 

  45. Dorigo, M.; Maniezzo, V.; Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst., Man, Cybern., Part B (Cybern.) 26(1), 29–41 (1996)

    Article  Google Scholar 

  46. Eskandari, L., Jafarian, A., Rahimloo, P., Baleanu, D.: A modified and enhanced ant colony optimization algorithm for traveling salesman problem. In: Mathematical Methods in Engineering, pp 257–265 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatanareshbabu Kuppili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdary, K.M., Kuppili, V. Enhanced Clustering and Intelligent Mobile Sink Path Construction for an Efficient Data Gathering in Wireless Sensor Networks. Arab J Sci Eng 46, 8329–8344 (2021). https://doi.org/10.1007/s13369-021-05415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05415-y

Keywords

Navigation