Skip to main content
Log in

Nodal/Saddle Stagnation Point Slip Flow of an Aqueous Convectional Magnesium Oxide–Gold Hybrid Nanofluid with Viscous Dissipation

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this analysis, convective heat transfer characteristics of a hybrid nanofluid mixture containing magnesium oxide (MgO) and gold (Au) nanoparticles are numerically studied. The impact of slip effects on nodal/saddle stagnation point boundary layer flow with viscous dissipation effect is mathematically modeled. The behavior of nanofluids is studied by employing Tiwari–Das nanofluid model. Pure water is the base fluid in this analysis. The governing partial differential equations with many independent variables are reduced to ordinary differential equations with one independent variable and then numerically solved by the Runge–Kutta–Fehlberg method with the desired accuracy. The outputs showed that MgO–Au/water hybrid nanofluid sharply raises the base fluid's thermal behavior. Results reveal that in the nodal and saddle point areas, the impact of higher slip effects significantly increases the local heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles, In: ASME International Mechanical Engineering Congress and Exposition. San Francisco, CA (1995)

  2. Ali, H.M.; Azhar, M.D.; Saleem, M.; Saeed, Q.S.; Saieed, A.: Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids. Therm. Sci. 19(6), 2039–2048 (2015)

    Google Scholar 

  3. Gangadhar, K.; Kannan, T.; Jayalakshmi, P.: Magnetohydrodynamicmicropolarnanofluid past a permeable stretching/shrinking sheet with Newtonian heating. J. Braz. Soc. Mech. Sci. Eng. 39(11), 4379–4391 (2017)

    Google Scholar 

  4. Sheikholeslami, M.; Rokni, H.B.: Nanofluid convective heat transfer intensification in a porous circular cylinder. Chem. Eng. Processing-Process Intensif. 120, 93–104 (2017)

    Google Scholar 

  5. Rao, M.V.S.; Gangadhar, K.; Varma, P.L.N.: A spectral relaxation method for three-dimensional MHD flow of nanofluid flow over an exponentially stretching sheet due to convective heating: an application to solar energy. Indian J. Phys. 92(12), 1577–1588 (2018)

    Google Scholar 

  6. Akilu, S.; Baheta, A.T.; Said, M.A.M.; Minea, A.A.; Sharma, K.V.: Properties of glycerol and ethylene glycol mixture based SiO2–CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 179, 118–128 (2018)

    Google Scholar 

  7. Madhesh, D.; Kalaiselvam, S.: Experimental analysis of hybrid nanofluid as a coolant. Proc. Eng. 97, 1667–1675 (2014)

    Google Scholar 

  8. Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 66, 189–195 (2015)

    Google Scholar 

  9. Vafaei, M.; Afrand, M.; Sina, N.; Kalbasi, R.; Sourani, F.; Teimouri, H.: Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys. E 85, 90–96 (2017)

    Google Scholar 

  10. Sajid, M.U.; Ali, H.M.: Thermal conductivity of hybrid nanofluids: a critical review. Int. J. Heat Mass Transf. 126, 211–234 (2018)

    Google Scholar 

  11. Nadeem, S.; Abbas, N.; Khan, A.U.: Characteristics of three dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results Phys. 8, 829–835 (2018)

    Google Scholar 

  12. Ghalambaz, M.; Doostani, A.; Izadpanahi, E.; Chamkha, A.J.: Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Therm. Anal. Calorim. 139(3), 2321–2336 (2020)

    Google Scholar 

  13. Ghadikolaei, S.S.; Yassari, M.; Sadeghi, H.; Hosseinzadeh, Kh.; Ganji, D.D.: Investigation on thermophysical properties of TiO2–Cu/ H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017)

    Google Scholar 

  14. Leong, K.Y.; Ahmad, K.K.; Ong, H.C.; Ghazali, M.J.; Baharum, A.: Synthesis and thermal conductivity characteristic of hybrid nanofluids—a review. Renew. Sustain. Energy Rev. 75, 868–878 (2017)

    Google Scholar 

  15. Babu, J.R.; Kumar, K.K.; Rao, S.S.: State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 77, 551–565 (2017)

    Google Scholar 

  16. Esfe, M.H.; Amiri, M.K.; Alirezaie, A.: Thermal conductivity of a hybrid nanofluid. J. Therm. Anal. Calorim. 134(2), 1113–1122 (2018)

    Google Scholar 

  17. Ghalambaz, M.; Roşca, N.C.; Roşca, A.V.; Pop, I.: Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-08-2019-0661

    Article  Google Scholar 

  18. Waini, I.; Ishak, A.; Pop, I.: Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Phys. Scr. 94(10), 105219 (2019)

    Google Scholar 

  19. Hiemenz, K.: The Boundary Layer on a Straight Circular Cyclinder immersed in a Uniform Fluid Flow (Doctoral dissertation, Thesis, Göttingen. Published in Dingler’s Polytechn. J) (1911)

  20. Howarth, L.: The boundary-layer in three-dimensional flow. Part II. The flow near a stagnation point. Philos Mag 42, 1433–1440 (1951)

    MathSciNet  MATH  Google Scholar 

  21. Bhattacharyya, S.; Gupta, A.S.: MHD flow and heat transfer at a general three-dimensional stagnation point. Int. J. Non-Linear Mech. 33(1), 125–134 (1998)

    MATH  Google Scholar 

  22. Bachok, N.; Ishak, A.; Nazar, R.; Pop, I.: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Phys. B 405, 4914–4918 (2010)

    Google Scholar 

  23. Dinarvand, S.; Hosseini, R.; Damangir, E.; Pop, I.: Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation. Meccanica 48(3), 643–652 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Dinarvand, S.; Hosseini, R.; Pop, I.: Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. Int. J. Numer. Methods Heat Fluid Flow 26, 40–62 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Ahmed, A.: On the wake of a circular cylinder with nodal and saddle attachment. J. Fluids Struct. 26(1), 41–49 (2010)

    Google Scholar 

  26. Yousefi, M.; Dinarvand, S.; Yazdi, M.E.; Pop, I.: Stagnation-point flow of an aqueous titania–copper hybrid nanofluid toward a wavy cylinder. Int. J. Numer. Methods Heat Fluid Flow 28, 1716–1735 (2018)

    Google Scholar 

  27. Zhao, Q., Xu, H., & Tao, L.: Homogeneous-heterogeneous reactions in boundary-layer flow of a nanofluid near the forward stagnation point of a cylinder. J. Heat Transf. 139(3) (2016)

  28. Abbas, N.; Saleem, S.; Nadeem, S.; Alderremy, A.A.; Khan, A.U.: On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results Phys. 9, 1224–1232 (2018)

    Google Scholar 

  29. Akbar, N.S.; Khan, Z.H.; Nadeem, S.: The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. J. Mol. Liq. 196, 21–25 (2014)

    Google Scholar 

  30. Fauzi, N.F.; Ahmad, S.; Pop, I.: Stagnation point flow and heat transfer over a nonlinear shrinking sheet with slip effects. Alex. Eng. J. 54(4), 929–934 (2015)

    Google Scholar 

  31. Rao, A.S.; Prasad, V.R.; Harshavalli, K.; Beg, O.A.: Thermal radiation effects on non-Newtonian fluid in a variable porosity regime with partial slip. J. Porous Media 19(4), 313–329 (2016)

    Google Scholar 

  32. Seo, I.W.; Song, C.G.: Numerical simulation of laminar flow past a circular cylinder with slip conditions. Int. J. Numer. Meth. Fluids 68(12), 1538–1560 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Gallardo, J.P.; Pettersen, B.; Andersson, H.I.: Effects of free-slip boundary conditions on the flow around a curved circular cylinder. Comput. Fluids 86, 389–394 (2013)

    Google Scholar 

  34. Haq, R.U.; Nadeem, S.; Khan, Z.H.; Akbar, N.S.: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys. E 65, 17–23 (2015)

    Google Scholar 

  35. Ibrahim, W.; Makinde, O.D.: Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. J. Aerosp. Eng. 29(2), 04015037 (2016)

    Google Scholar 

  36. Malvandi, A.; Hedayati, F.; Ganji, D.D.: Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technol. 253, 377–384 (2014)

    Google Scholar 

  37. Khadrawi, A.F.; Al-Shyyab, A.: Slip flow and heat transfer in axially moving micro-concentric cylinders. Int. Commun. Heat Mass Transf. 37(8), 1149–1152 (2010)

    Google Scholar 

  38. Abbas, N., Malik, M.Y., Nadeem, S.: Study of three dimensional stagnation point flow of hybrid nanofluid over an isotropic slip surface. Phys. A Stat. Mech. Appl. 554, 124020 (2020)

    MathSciNet  Google Scholar 

  39. Makanda, G.; Shaw, S.; Sibanda, P.: Effects of radiation on MHD free convection of a Casson fluid from a horizontal circular cylinder with partial slip in non-Darcy porous medium with viscous dissipation. Bound. Value Probl. 2015(1), 1–14 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Gorla, R.S.R.: Viscous dissipation effects on heat transfer in an axisymmetric stagnation flow on a circular cylinder. Lett. Heat Mass Transf. 5(2), 121–130 (1978)

    Google Scholar 

  41. Nakayama, A.; Pop, I.: Free convection over a nonisothermal body in a porous medium with viscous dissipation. Int. Commun. Heat Mass Transf. 16(2), 173–180 (1989)

    Google Scholar 

  42. Mabood, F.; Shateyi, S.; Rashidi, M.M.; Momoniat, E.; Freidoonimehr, N.: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv. Powder Technol. 27(2), 742–749 (2016)

    Google Scholar 

  43. Bahiraei, M.; Jamshidmofid, M.; Amani, M.; Barzegarian, R.: Investigating exergy destruction and entropy generation for flow of a new nanofluid containing graphene–silver nanocomposite in a micro heat exchanger considering viscous dissipation. Powder Technol. 336, 298–310 (2018)

    Google Scholar 

  44. Hayat, T.; Waqas, M.; Shehzad, S.A.; Alsaedi, A.: MHD stagnation point flow of Jeffrey fluid by a radially stretching surface with viscous dissipation and Joule heating. J. Hydrol. Hydromech. 63(4), 311–317 (2015)

    Google Scholar 

  45. Lund, L.A.; Omar, Z.; Khan, I.; Seikh, A.H.; Sherif, E.S.M.; Nisar, K.S.: Stability analysis and multiple solution of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. J. Mater. Res. Technol. 9(1), 421–432 (2020)

    Google Scholar 

  46. Wang, X.; Xu, X.; Choi, S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13(4), 474–480 (1999)

    Google Scholar 

  47. Yu, W.; Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Res. 5, 167–171 (2003)

    Google Scholar 

  48. Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5), 1326–1336 (2008)

    Google Scholar 

  49. Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(19), 3639–3653 (2003)

    MATH  Google Scholar 

  50. Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952)

    Google Scholar 

  51. Hayat, T.; Nadeem, S.: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017)

    Google Scholar 

  52. NademiRostami, M.; Dinarvand, S.; Pop, I.: Dual solutions for mixed convective stagnation point flow of an aqueous silica–alumina hybrid nanofluid. Chin. J. Phys. 56(5), 2465–2478 (2018)

    Google Scholar 

  53. Nayak, A.K.; Singh, R.K.; Kulkarni, P.P.: Measurement of volumetric thermal expansion coefficient of various nanofluids. Tech. Phys. Lett. 36(8), 696–698 (2010)

    Google Scholar 

  54. Kamyar, A.; Saidur, R.; Hasanuzzaman, M.: Application of computational fluid dynamics (CFD) for nanofluids. Int. J. Heat Mass Transf. 55(15–16), 4104–4115 (2012)

    Google Scholar 

  55. Tiwari, R.J.; Das, M.K.: Heat transfer augmentation in a two sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    MATH  Google Scholar 

  56. Dinarvand, S.: Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: a novel hybridity model. Microsyst. Technol. 25, 2609–2623 (2019)

    Google Scholar 

  57. Nasir, N.A.A.M.; Ishak, A.; Pop, I.: Stagnation point flow and heat transfer past a permeable stretching/shrinking Riga plate with velocity slip and radiation effects. J. Zhejiang Univ. Sci. A 20(4), 290–299 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kannan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, K., Edukondala Nayak, R., Venkata Subba Rao, M. et al. Nodal/Saddle Stagnation Point Slip Flow of an Aqueous Convectional Magnesium Oxide–Gold Hybrid Nanofluid with Viscous Dissipation. Arab J Sci Eng 46, 2701–2710 (2021). https://doi.org/10.1007/s13369-020-05195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05195-x

Keywords

Navigation