Skip to main content
Log in

Impact of Process Parameters on Solid Particle Erosion Behavior of Waste Marble Dust-Filled Polyester Composites

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide broad information on the solid particle erosion behavior of polymeric composites using waste marble dust as the filler. Attention is paid toward the effects of test parameters, i.e., impingement velocity, filler content, striking angle, etc., on the erosion wear rate, and their failure mechanisms are discussed. Marble dust, the filler material in this work, is an industrial/construction waste generated during the processing of marble rocks and is a known air pollutant. The possibility of incorporating waste marble dust to enhance the erosion resistance of polyester is explored in this research. The parameter combinations obtained from the Taguchi’s L25 orthogonal array are used for the erosion wear trials on the composite samples. The analysis of test results reveals that impingement velocity, filler content and striking angle in that sequence have significant effect on the erosion rate. Statistical analysis is made on the test results carried out on the composite samples using different levels within the test range of the significant parameters individually keeping all other parameters constant to explore their effect more precisely on the erosion rate. Analysis of the morphologies of worn composite surfaces reveals the predominant wear mechanisms and the erosion response (ductile/brittle) of the composites. This work shows that inclusion of various fillers into polymeric composites improves the erosion resistance which would attract the researchers to find out their application as tribo-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arani, N.H.; Rabba, W.; Papini, M.: Solid particle erosion of epoxy matrix composites reinforced by Al2O3 spheres. Tribol. Int. 136, 432–445 (2019). https://doi.org/10.1016/j.triboint.2019.04.010

    Article  Google Scholar 

  2. Fried, J.R.: Polymers in Aerospace Applications: EBSCOhost., USA

  3. Tilly, G.P.: Erosion caused by airborne particles. Wear 14, 63–79 (1969). https://doi.org/10.1016/0043-1648(69)90035-0

    Article  Google Scholar 

  4. Slikkerveer, P.J.; Touwslager, F.J.: Erosion of elastomeric protective coatings. Wear 236, 189–198 (1999). https://doi.org/10.1016/S0043-1648(99)00268-9

    Article  Google Scholar 

  5. Rasool, G.; Sharifi, S.; Johnstone, C.; Stack, M.M.: Mapping synergy of erosion mechanisms of tidal turbine composite materials in sea water conditions. J. Bio Tribo-Corros. 2, 1–15 (2016). https://doi.org/10.1007/s40735-016-0040-5

    Article  Google Scholar 

  6. Su, M.; Zeng, X.; Lai, X.; Li, H.: Effect of mixing sequence of γ-piperazine propylmethyl dimethoxysilane on the tracking and erosion resistance of silicon rubber. Polym. Test. 65, 491–496 (2018). https://doi.org/10.1016/j.polymertesting.2017.12.031

    Article  Google Scholar 

  7. Wetzel, B.; Rosso, P.; Haupert, F.; Friedrich, K.: Epoxy nanocomposites—fracture and toughening mechanisms. Eng. Fract. Mech. 73, 2375–2398 (2006). https://doi.org/10.1016/j.engfracmech.2006.05.018

    Article  Google Scholar 

  8. Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W.: Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B Eng. 39, 933–961 (2008). https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  9. Maxwell, D.; Young, R.J.; Kinloch, A.J.: Hybrid particulate-filled epoxy-polymers. J. Mater. Sci. Lett. 3, 9–12 (1984). https://doi.org/10.1007/BF00720061

    Article  Google Scholar 

  10. Zahavi, J.; Schmitt, G.: f: Solid particle erosion of reinforced composite materials. Wear 71, 179–190 (1981)

    Article  Google Scholar 

  11. Drensky, G.; Hamed, A.; Tabakoff, W.; Abot, J.: Experimental investigation of polymer matrix reinforced composite erosion characteristics. Wear 270, 146–151 (2011). https://doi.org/10.1016/j.wear.2010.08.017

    Article  Google Scholar 

  12. Mahapatra, S.S.; Patnaik, A.; Satapathy, A.: Taguchi method applied to parametric appraisal of erosion behavior of GF-reinforced polyester composites. Wear 265, 214–222 (2008). https://doi.org/10.1016/j.wear.2007.10.001

    Article  Google Scholar 

  13. Biswas, S.; Ray, S.; Satapathy, A.; Patnaik, A.; Journal, A.I.: Erosion wear behavior of TiO 2 filled glass fiber reinforced epoxy composites. Mater. Sci. an Indian J. 5, 258–266 (2009)

    Google Scholar 

  14. Singh, Y.; Kumar, D.: A study on mechanical characterization and solid particle erosion response of glass fiber epoxy based composite with filler SiC. J. Basic Appl. Eng. Res. 4, 145–156 (2017)

    Google Scholar 

  15. Sarkar, P.; Modak, N.; Sahoo, P.: Mechanical and tribological characteristics of aluminium powder filled glass epoxy composites. In: Materials Today: Proceedings. pp. 5496–5505. Elsevier Ltd (2018)

  16. Al-Zubaidi, A.B.; Al-Tabbakh, A.A.; Ahmed, S.R.; Achour, A.: Erosion Wear and Hardness of Glass Fiber/Epoxy with Nano and Micro TiO2 Hybride Composites. In: Special Issus: 1st Scientific International Conference, College of Science, Al-Nahrain University. pp. 43–51 (2018)

  17. Krishna, S.B.; Kallesh, S.S.; Hemanth, R.: Effect of Fillers on Erosive Wear behavior of Polyoxymethylene/Polytetrafluoroethylene blend and their composites: a statistical approach. Indian J. Adv. Chem. Sci. S1 1, 45–51 (2016)

    Google Scholar 

  18. Siddhartha, P.A.; Bhatt, A.D.: Mechanical and dry sliding wear characterization of epoxy-TiO2 particulate filled functionally graded composites materials using Taguchi design of experiment. Mater. Des. 32, 615–627 (2011). https://doi.org/10.1016/j.matdes.2010.08.011

    Article  Google Scholar 

  19. Baptista, R.; Mendão, A.; Rodrigues, F.; Figueiredo-Pina, C.G.; Guedes, M.; Marat-Mendes, R.: Effect of high graphite filler contents on the mechanical and tribological failure behavior of epoxy matrix composites. Theor. Appl. Fract. Mech. 85, 113–124 (2016). https://doi.org/10.1016/j.tafmec.2016.08.013

    Article  Google Scholar 

  20. Upadhyay, R.K.; Kumar, A.: Epoxy-graphene-MoS 2 composites with improved tribological behavior under dry sliding contact. Tribol. Int. 130, 106–118 (2019). https://doi.org/10.1016/j.triboint.2018.09.016

    Article  Google Scholar 

  21. Gupta, G.; Satapathy, A.: Polyvinyl Alcohol-Modified Pithecellobium Clypearia Benth Herbal Residue FiberPolypropylene Composites. Polym. Compos. 37, 915–924 (2016). https://doi.org/10.1002/pc.25468

    Article  Google Scholar 

  22. Akinci, A.; Ercenk, E.; Yilmaz, S.; Sen, U.: Slurry erosion behaviors of basalt filled low density polyethylene composites. Mater. Des. 32, 3106–3111 (2011). https://doi.org/10.1016/j.matdes.2010.12.029

    Article  Google Scholar 

  23. Jena, H.; Pradhan, A.K.; Pandit, M.K.: Study of solid particle erosion wear behavior of bamboo fiber reinforced polymer composite with cenosphere filler. Adv. Polym. Technol. 37, 761–769 (2018). https://doi.org/10.1002/adv.21718

    Article  Google Scholar 

  24. Mohan, N.; Mahesha, C.R.; Rajaprakash, B.M.: Erosive wear behaviour of WC filled glass epoxy composites. In: Procedia Engineering. pp. 694–702. Elsevier B.V. (2013)

  25. Arani, N.H.; Eghbal, M.; Papini, M.: Modeling the solid particle erosion of rubber particulate-reinforced epoxy. Tribol. Int. 153, 106656 (2021). https://doi.org/10.1016/j.triboint.2020.106656

    Article  Google Scholar 

  26. Purohit, A., Satapathy, A.: A study on erosion wear performance of Linz-Donawitz sludge filled polypropylene matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 377, 1–5 (2018). https://doi.org/10.1088/1757-899X/377/1/012045

    Article  Google Scholar 

  27. M, Y.; N, H.R.A.: Erosion Wear Response of Pineapple Leaf Fiber (PALF) Reinforced Vinylester Composites Filled With Redmud : an Alumina plant waste. Int. J. Eng. Dev. Res. 6, 734–746 (2018)

  28. Sundarakannan, R.; Arumugaprabu, V.; Manikandan, V.; Deepak Joel Johnson, R.: Tribo performance studies on redmud filled pineapple fiber composite. In: Materials Today: Proceedings. pp. 1225–1234. Elsevier Ltd. (2018)

  29. Kumar Padhi, P.; Satapathy, A.: Solid particle erosion behavior of BFS-Filled Epoxy-SGF composites using Taguchi’s experimental design and ANN. Tribol. Trans. 57, 396–407 (2014). https://doi.org/10.1080/10402004.2013.877178

    Article  Google Scholar 

  30. Ray, S.; Rout, A.K.; Sahoo, A.K.: Development and characterization of glass/polyester composites filled with industrial wastes using statistical techniques. Indian J. Eng. Mater. Sci. 25, 169–182 (2018)

    Google Scholar 

  31. Mathavan, J.J.; Patnaik, A.: Analysis of wear properties of granite dust filled polymer composite for wind turbine blade. Results Mater. 5, 100073 (2020). https://doi.org/10.1016/j.rinma.2020.100073

    Article  Google Scholar 

  32. Arai, T.; Yamazaki, H.; Ikeda, H.: Solution casting process for producing polymer film. United State Pat. 2, (2007)

  33. Biswas, S.; Satapathy, A.: Tribo-performance analysis of red mud filled glass-epoxy composites using Taguchi experimental design. Mater. Des. 30, 2841–2853 (2009). https://doi.org/10.1016/j.matdes.2009.01.018

    Article  Google Scholar 

  34. Wang, Y.Q.; Huang, L.P.; Liu, W.L.; Li, J.: The blast erosion behaviour of ultrahigh molecular weight polyethylene. Wear 218, 128–133 (1998). https://doi.org/10.1016/S0043-1648(97)00289-5

    Article  Google Scholar 

  35. Dong, M.; Li, Q.; Liu, H.; Liu, C.; Wujcik, E.K.; Shao, Q.; Ding, T.; Mai, X.; Shen, C.; Guo, Z.: Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer (Guildf). 158, 381–390 (2018). https://doi.org/10.1016/j.polymer.2018.11.003

    Article  Google Scholar 

  36. Harsha, A.P.; Tewari, U.S.; Venkatraman, B.: Solid particle erosion behaviour of various polyaryletherketone composites. Wear 254, 693–712 (2003). https://doi.org/10.1016/S0043-1648(03)00143-1

    Article  Google Scholar 

  37. Harsha, A.P.; Thakre, A.A.: Investigation on solid particle erosion behaviour of polyetherimide and its composites. Wear 262, 807–818 (2007). https://doi.org/10.1016/j.wear.2006.08.012

    Article  Google Scholar 

  38. Tilly, G.P.; Sage, W.: The interaction of particle and material behaviour in erosion processes. Wear 16, 447–465 (1970). https://doi.org/10.1016/0043-1648(70)90171-7

    Article  Google Scholar 

  39. Barkoula, N.M.; Gremmels, J.; Karger-Kocsis, J.: Dependence of solid particle erosion on the cross-link density in an epoxy resin modified by hygrothermally decomposed polyurethane. Wear 247, 100–108 (2001). https://doi.org/10.1016/S0043-1648(00)00529-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Kumar Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S.K., Satapathy, A. & Mantry, S. Impact of Process Parameters on Solid Particle Erosion Behavior of Waste Marble Dust-Filled Polyester Composites. Arab J Sci Eng 46, 7197–7209 (2021). https://doi.org/10.1007/s13369-020-05175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05175-1

Keywords

Navigation