Skip to main content
Log in

Microstructure, Magnetic and Mössbauer Studies of Mechanically Alloyed FeCoNi Nanocrystalline Powders

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Magnetic structures have attracted a great interest due to their multiple applications, from physics to biomedicine. Iron, nickel and cobalt are among the most important ferromagnetic elements, therefore the synthesis of Fe-based alloys processed by ball milling from the Fe, Ni and Co powders is of particular interest. This subject mainly concerned the structural and magnetic properties evolution of Fe50Co25Ni25 nanocrystalline powder mixture prepared by mechanical alloying in a high-energy planetary ball mill under argon atmosphere. For extended milling time of 100 h, two nanocrystalline Fe (Co,Ni) (∼ 87 nm) and fcc-Co-rich (∼ 47 nm) phases were identified. This phase transformations, dependent on the alloying time, are related to the increase in dislocations and accumulation of stacking faults. Dislocation density of 1.25 × 1015 m−2 is estimated after 100 h of milling. The milled FeCoNi alloy displays a soft ferromagnetic behavior with single magnetic domain (Hc ∼ 12.5 Oe and Mr/Ms ∼ 0.007 for 100 h milling). Mössbauer analysis gives three main magnetic components: two different components attributed to metallic Fe species located in bcc and fcc Fe–Co–Ni domains and a magnetic component characterized by larger hyperfine fields and isomer shifts typical of Fe3+, Fe2+ species and Fe ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Prasad, N.K.; Kumar, V.: Structure–magnetic properties correlation in mechanically alloyed nanocrystalline Fe–Co–Ni–(Mg–Si)x alloy powders. J. Mater. Sci. Mater. Elect. 26, 10109–10118 (2015). https://doi.org/10.1007/s10854-015-3695-7

    Article  Google Scholar 

  2. Raanaei, H.; Eskandari, H.; Mohammad, H.V.: Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying. J. Magn. Magn. Mater. 98, 190–195 (2016). https://doi.org/10.1016/j.jmmm.2015.09.031

    Article  Google Scholar 

  3. Siyuan, D.; Tao, N.; Jing, Y.; Hucheng, Y.; Shukui, Z.: Recent advances and applications of magnetic nanomaterials in environmental sample analysis. Trac. Trend. Anal. Chem. 126, 115864 (2020). https://doi.org/10.1016/j.trac.2020.115864

    Article  Google Scholar 

  4. Liming, S.; Yi, Xu: Amorphous behavior of ZrxFeNiSi0.4B0.6 high entropy alloys synthesized by mechanical alloying. J. Non. Cryst. Solids. 530, 119854 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119854

    Article  Google Scholar 

  5. Pikula, T.; Oleszak, D.; Pękała, M.; Jartych, E.: Structure and some magnetic properties of mechanically synthesized and thermally treated Co–Fe–Ni alloys. J. Magn. Magn. Mater. 320, 413–420 (2008). https://doi.org/10.1016/j.jmmm.2007.06.020

    Article  Google Scholar 

  6. Hiroaki, K.; Hitoshi, M.: Mechanical alloying of Ga2O3 and Ga2O3-Al2O3. Mater. Chem. Phys. 250, 123080 (2020). https://doi.org/10.1016/j.matchemphys.2020.123080

    Article  Google Scholar 

  7. Hapishah, A.N.; Hamidon, M.N.; Syazwan, M.M.; Shafiee, F.N.: Effect of grain size on microstructural and magnetic properties of holmium substituted yttrium iron garnets (Y1.5Ho1.5Fe5O12) mmm Results. Phys. 14, 102391 (2019). https://doi.org/10.1016/j.rinp.2019.102391

    Article  Google Scholar 

  8. Guittoum, A.; Layadi, A.; Bourzami, A.; Tafat, H.; Souami, N.; Boutarfaia, S.; Lacour, D.: X- ray diffraction, microstructure, Mössbauer and magnetization studies of nanostructured Fe50Ni50 alloy prepared by mechanical alloying. J. Magn. Magn. Mater. 320, 1385–1392 (2008). https://doi.org/10.1016/j.jmmm.2007.11.021

    Article  Google Scholar 

  9. Inoue, A.; Shen, B.L.; Koshiba, H.; Kato, H.; Yavari, A.R.: Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Mater. 52, 1631–1637 (2004). https://doi.org/10.1016/j.actamat.2003.12.008

    Article  Google Scholar 

  10. Chokprasombat, K.; Pinitsoontorn, S.; Maensiri, S.: Effect of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by chemical reduction method. J. Magn. Magn. Mater. 405, 174–180 (2016). https://doi.org/10.1016/j.jmmm.2015.12.064

    Article  Google Scholar 

  11. Koohkan, R.; Sharafi, S.; Shokrollahi, H.; Janghorban, K.: Preparation of nanocrystalline Fe–Ni powders by mechanical alloying used in soft magnetic composites. J. Magn. Magn. Mater. 320, 1089–1094 (2008). https://doi.org/10.1016/j.jmmm.2007.10.033

    Article  Google Scholar 

  12. Jiles, D.: Introduction to Magnetism and Magnetic Materials, pp. 280–297. Chapman & Hall, London (1991)

    Book  Google Scholar 

  13. Moumeni, H.; Alleg, S.; Greneche, J.M.: Structural properties of Fe50Co50 nanostructured Powder prepared by mechanical alloying. J. Alloy. Compd. 386, 12–19 (2005). https://doi.org/10.1016/j.jallcom.2004.05.017

    Article  Google Scholar 

  14. Msellak, K.; Chopart, J.P.; Jbara, O.; Aaboubi, O.; Amblard, J.: Magnetic field effects on Ni–Fe alloys codeposition. J. Magn. Magn. Mater. 281, 295–304 (2004). https://doi.org/10.1016/j.jmmm.2004.04.118

    Article  Google Scholar 

  15. El-Gendy, A.A.; Ibrahim, E.M.M.; Khavrus, V.O.; Krupskaya, Y.; Hampel, S.; Leonhardt, A.; Büchner, B.; Klingeler, R.: The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47, 2821–2828 (2009). https://doi.org/10.1016/j.carbon.2009.06.025

    Article  Google Scholar 

  16. Bai, A.; Hu, C.C.; Wen, T.C.: Composition control of ternary FeCoNi deposits using cyclic voltammetry. Electrochim. Acta 48, 2425–2434 (2003). https://doi.org/10.1016/S0013-4686(03)00266-4

    Article  Google Scholar 

  17. Hisada, D.; Fujiwara, Y.; Sato, H.; Jimbo, M.; Kobayashi, T.; Hata, K.: Structure and magnetic properties of FeCo nanoparticles encapsulated in carbon nanotubes grown by microwave plasma enhanced chemical vapordeposition. J. Magn. Magn. Mater. 323, 3184–3188 (2011). https://doi.org/10.1016/j.jmmm.2011.06.029

    Article  Google Scholar 

  18. Mizutani, S.; Yokoshima, T.; Nam, H.S.; Nakanishi, T.; Osaka, T.; Yamazaki, Y.: High-frequency permeability and thermal stability of electrodeposited high-Bs CoNiFe thin films. IEEE. T. Magn. 36, 2539–2541 (2000). https://doi.org/10.1109/20.908499

    Article  Google Scholar 

  19. Loginov, P.; Sidorenko, D.; Bychkova, M.; Petrzhik, M.; Levashov, M.: Mechanical alloying as an effective way to achieve superior properties of Fe–Co–Ni binder alloy. Metals 7, 570 (2017). https://doi.org/10.3390/met7120570

    Article  Google Scholar 

  20. Rathi, A.; Meka, V.M.; Jayaraman, T.V.: Synthesis of nanocrystalline equiatomic nickel-cobalt-iron alloy powders by mechanical alloying and their structural and magnetic characterization. J. Magn. Magn. Mater. 469, 467–482 (2019). https://doi.org/10.1016/j.jmmm.2018.09.002

    Article  Google Scholar 

  21. Muratov, D.G.; Kozhitov, L.V.; Karpenkov, D.Y.; Yakushko, E.V.; Korovin, E.Yu.; Vasil’ev, A.V.; Popkova, A.V.; Kazaryan, T.M.; Shadrinov, A.V. : Synthesis and magnetic properties of Fe–Co–Ni/C nanocomposites. Russ. Phys. J. 60, 1924–1930 (2018). https://doi.org/10.1007/s11182-018-1304-y

  22. Lutterotti, L.: MAUD CPD Newsletter (IUCr). 24 (2000)

  23. Varret, F.; Teillet, J.: Unpublished Mosfit Program, Université du Maine France (1976)

  24. Cardellini, F.; Mazzone, G.: Thermal and structural study of the h.c.p.-to-f.c.c. transformation in cobalt. Philos. Mag. 67A(6), 1289–1300 (1993). https://doi.org/10.1080/01418619308225355

    Article  Google Scholar 

  25. Sort, J.; Nogués, J.; Suriñach, S.; Muñoz, J.S.; Baró, M.D.: Correlation between stacking fault formation, allotropic phase transformations and magnetic properties of ball-milled cobalt. Mater. Sci. Eng., A A375–377, 869–873 (2004). https://doi.org/10.1016/j.msea.2003.10.186

    Article  Google Scholar 

  26. Shokrallahi, H.: The magnetic and structural properties of the most important alloys of iron produced by mechanical alloying. Mater. Des. 30, 3374–3387 (2009). https://doi.org/10.1016/j.matdes.2009.03.035

    Article  Google Scholar 

  27. Alleg, S.; Kartoutb, S.; Ibrir, M.; Azzaza, S.; Fenineche, N.E.; Sunol, J.J.: Magnetic, structural and thermal properties of the Finemet-type powders prepared by mechanical alloying. J. Phys. Chem. Sol. 74, 550–557 (2013). https://doi.org/10.1016/j.jpcs.2012.12.002

    Article  Google Scholar 

  28. Lachheb, R.; Bachaga, T.; Khitouni, M.; Makhlouf, T.: Phase transformations and microstructural properties of nanocrystalline Fe75Si10B10Nb5 alloy synthesized by mechanical alloying. Adv. Powder Technol. 26(6), 1563–1569 (2015). https://doi.org/10.1016/j.apt.2015.08.010

    Article  Google Scholar 

  29. Mhadhbi, M.; Khitouni, M.; Azabou, M.; Kolsi, A.: Characterization of Al and Fe nanosized powders synthesized by high-energy mechanical milling. Mater. Charact. 59, 944–950 (2008). https://doi.org/10.1016/j.matchar.2007.08.001

    Article  Google Scholar 

  30. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  31. Fecht, H.J.: Nanostructure formation by mechanical attrition. Nanostruct. Mater. 6, 33–42 (1995). https://doi.org/10.1016/0965-9773(95)00027-5

    Article  Google Scholar 

  32. Herzer, G.; in: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials, Elsevier Science B.V., 10 (1997)

  33. DelshadChermahini, M.; Sharafi, S.; Shokrollahi, H.; Zandrahimi, M.; Shafyei, A.: The evolution of heating rate on the microstructural and magnetic properties of milled nanostructured Fe1-xCox (x = 0.2, 0.3, 0.4, 0.5 and 0.7) powder. J. Alloys. Compds. 484, 54–58 (2009). https://doi.org/10.1016/j.jallcom.2009.05.055

    Article  Google Scholar 

  34. Souilaha, S.; Alleg, S.; Djebbaria, C.; Bensalema, R.; Sunol, J.J.: Magnetic and microstructural properties of the mechanically alloyed Fe57Co21Nb7B15 powder mixture. Mater. Chem. Phys. 132, 766–772 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.010

    Article  Google Scholar 

  35. Zeng, Q.; Baker, I.; Mc Creary, V.; Yan, Z.C.: Soft ferromagnetism in nanostructured mechanical alloying FeCo based powders. J. Magn. Magn. Mater. 318, 28 (2007). https://doi.org/10.1016/j.jmmm.2007.04.037

    Article  Google Scholar 

  36. Luborsky, F.E.: Development of elongated particle magnets. J. Appl. Phys. 32, 171 (1961). https://doi.org/10.1063/1.2000392

    Article  Google Scholar 

  37. Kneller, E.; Fine particle theory. In: A.E. Berkowitz, E. Kneller (Eds.), Magnetism and Metallurgy, Academic Press, New York. 1. 365–471(1969)

  38. Abdellaoui, M.; Djega-Mariadassou, C.; Gaffet, E.: Structural study of Fe–Si nanostructured materials. J. Alloys. Compds. 259, 241 (1997). https://doi.org/10.1016/S0925-8388(97)00102-3

    Article  Google Scholar 

  39. Bensebaa, N.; Loudjani, N.; Alleg, S.; Dekhil, L.; Suñol, J.J.; Sae, M.Al.; Bououdina, M.: XRD analysis and magnetic properties of nanocrystalline Ni20Co80 alloys. J. Magn. Magn. Mater. 349, 51–56 (2014). https://doi.org/10.1016/j.jmmm.2013.08.045

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakia Daly.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daly, R., Khitouni, N., Escoda, M.L. et al. Microstructure, Magnetic and Mössbauer Studies of Mechanically Alloyed FeCoNi Nanocrystalline Powders. Arab J Sci Eng 46, 5633–5643 (2021). https://doi.org/10.1007/s13369-020-05166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05166-2

Keywords

Navigation