Skip to main content
Log in

A Transient Model of a Variable Geometry Turbocharger Turbine Using a Passive Actuator

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The highly pulsated flow output of an engine causes a nonlinear dynamic behavior of a variable geometry turbocharger (VGT). A method, namely active control turbocharger with a passive actuator, was previously developed to recover more energy than the steady-state-based conventional methods. An accurate transient model is required to optimize and improve the control system performance. This paper focuses on the formulation of the unified control-oriented model of the VGT turbine and passive actuator. The bond graph framework is utilized to build a unified system consisting of three principal parts, which are the VGT turbine, the intake air path, and the passive actuator. The simulation results were then benchmarked with the experimental data by varying two tune-able parameters of the actuator. The model has shown agreeable results showing a similar pattern while being changed from one to another condition with the errors of less than 6.5% of cycle-averaged power for PCT cases. In summary, the model has shown its capability to replicate the VGT system behavior with the passive actuator and its possibility to be applied in the optimization process of the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Samokhin, S.; Hyytia, J.; Zenger, K.; Ranta, O.; Blomstedt, O.; Larmi, M.: Adaptive boost pressure control for four-stroke diesel engine marine application in the presence of dynamic uncertainties. IEEE Trans. Control Syst. Technol. 27, 221–233 (2019). https://doi.org/10.1109/TCST.2017.2768425

    Article  Google Scholar 

  2. Aghaali, H.; Ångström, H.-E.: A review of turbocompounding as a waste heat recovery system for internal combustion engines. Renew. Sustain. Energy Rev. 49, 813–824 (2015). https://doi.org/10.1016/j.rser.2015.04.144

    Article  Google Scholar 

  3. Feneley, A.J.; Pesiridis, A.; Andwari, A.M.: Variable geometry turbocharger technologies for exhaust energy recovery and boosting-a review. Renew. Sustain. Energy Rev. 71, 959–975 (2017). https://doi.org/10.1016/j.rser.2016.12.125

    Article  Google Scholar 

  4. Liu, J.; Wang, H.; Zheng, Z.; Zou, Z.; Yao, M.: Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes. In: 2016. https://doi.org/10.4271/2016-01-2185.

  5. Ricardo, M.B.; Apostolos, P.; Yang, M.Y.: Overview of boosting options for future downsized engines. Sci. China Technol. Sci. 54, 318–331 (2011). https://doi.org/10.1007/s11431-010-4272-1

    Article  Google Scholar 

  6. Huang, L.; Cheng, G.; Zhu, G.; Li, D.: Development of a bond graph based model library for turbocharged diesel engines. Energy 148, 728–743 (2018). https://doi.org/10.1016/j.energy.2018.02.002

    Article  Google Scholar 

  7. Ding, Z.; Zhuge, W.; Zhang, Y.; Chen, H.; Martinez-Botas, R.: Investigation on Pulsating Flow Effect of a Turbocharger Turbine. In: Symp. Keynotes; Adv. Numer. Model. Turbomach. Flow Optim. Fluid Mach. Ind. Environ. Appl. Fluid Mech. Pump. Mach., ASME, 2017, Vol. 1A, p. V01AT02A008. https://doi.org/10.1115/FEDSM2017-69186.

  8. Graciano, V.; Vargas, J.V.C.; Ordonez, J.C.: Modeling and simulation of diesel, biodiesel and biogas mixtures driven compression ignition internal combustion engines. Int. J. Energy Res. 40, 100–111 (2016). https://doi.org/10.1002/er.3286

    Article  Google Scholar 

  9. Padzillah, M.H.; Rajoo, S.; Yang, M.; Martinez-Botas, R.F.: Influence of pulsating flow frequencies towards the flow angle distributions of an automotive turbocharger mixed-flow turbine. Energy Convers. Manag. 98, 449–462 (2015). https://doi.org/10.1016/j.enconman.2015.03.028

    Article  Google Scholar 

  10. Cao, K.; Newton, P.; Flora, H.; Martinez-Botas, R.: The development of a novel unsteady flow control method: controlling the rotating nozzle ring. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232, 4495–4509 (2018). https://doi.org/10.1177/0954406217694280

    Article  Google Scholar 

  11. Pesiridis, A.; Martinez-Botas, R.F.: Experimental evaluation of active flow control mixed-flow turbine for automotive turbocharger application. J. Turbomach. 129, 44 (2007). https://doi.org/10.1115/1.2372778

    Article  Google Scholar 

  12. Pesiridis, A., Rajoo, S.: Variable geometry turbocharger active control strategies for enhanced energy recovery. In: SAE Technical Paper, 2013. https://doi.org/10.4271/2013-01-0120.

  13. Mérigot, Y.; Rajoo, S.; Martinez-Botas, R.F.: Active Control Turbocharger (ACT): a method to improve energy extraction from an engine exhaust gas. In: Microturbines Small Turbomachinery; Oil Gas Appl., ASMEDC, 2009: Vol. 5, pp. 137–151. https://doi.org/10.1115/GT2009-59550.

  14. Pesiridis, A.: Issues in the integration of active control turbochargers with internal combustion engines. Int. J. Automot. Technol. 13, 873–884 (2012). https://doi.org/10.1007/s12239

    Article  Google Scholar 

  15. Pesiridis, A.: The application of active control for turbocharger turbines. Int. J. Engine Res. 13, 385–398 (2012). https://doi.org/10.1177/1468087411435205

    Article  Google Scholar 

  16. Bahiuddin, I.; Mazlan, S.A.; Imaduddin, F.; Ubaidillah, : A new control-oriented transient model of variable geometry turbocharger. Energy 125, 297–312 (2017). https://doi.org/10.1016/j.energy.2017.02.123

    Article  Google Scholar 

  17. Pesiridis, A.; Martinez-Botas, R.F.: Experimental testing of an active control turbocharger turbine inlet equipped with a sliding sleeve nozzle. Proc. Inst. Mech. Eng. J. Automob. Eng. 227, 800–811 (2013). https://doi.org/10.1177/0954407012464843

    Article  Google Scholar 

  18. Rajoo, S.; Pesiridis, A.; Martinez-Botas, R.: Novel method to improve engine exhaust energy extraction with active control turbocharger. Int. J. Engine Res. 15, 236–249 (2014). https://doi.org/10.1177/1468087412472414

    Article  Google Scholar 

  19. Symans, M.D.; Constantinou, M.C.: Semi-active control systems for seismic protection of structures: a state-of-the-art review. Eng. Struct. 21, 469–487 (1999). https://doi.org/10.1016/S0141-0296(97)00225-3

    Article  Google Scholar 

  20. Bahiuddin, I.; Mazlan, S.A.; Imaduddin, F.; Ubaidillah B. Ichwan, U.B.: Magnetorheological valve based actuator for improvement of passively controlled turbocharger system. In: AIP Conference Proceedings, 2016: p. 030007. https://doi.org/10.1063/1.4943431.

  21. Kasprzyk, J.; Wyrwał, J.; Krauze, P.: Automotive MR damper modeling for semi-active vibration control. In: IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, IEEE, 2014: pp. 500–505. https://doi.org/10.1109/AIM.2014.6878127.

  22. Savaresi, S.M.; Poussot-Vassal, C.; Spelta, C.; Sename, O.; Dugard, L.: Semi-Active Suspension Technologies and Models. Elsevier, Amsterdam (2010). https://doi.org/10.1016/B978-0-08-096678-6.00002-X

    Book  Google Scholar 

  23. Nikzadfar, K.; Shamekhi, A.H.: An extended mean value model (EMVM) for control-oriented modeling of diesel engines transient performance and emissions. Fuel 154, 275–292 (2015). https://doi.org/10.1016/j.fuel.2015.03.070

    Article  Google Scholar 

  24. Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.: Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: a bond graph approach. Energy 102, 31–43 (2016). https://doi.org/10.1016/j.energy.2016.01.106

    Article  Google Scholar 

  25. Sanchez, R.; Medina, A.: Wind turbine model simulation: a bond graph approach. Simul. Model. Pract. Theory 41, 28–45 (2014). https://doi.org/10.1016/j.simpat.2013.11.001

    Article  Google Scholar 

  26. Chen, Q.; Xu, W.: A zero-equation turbulence model for indoor airflow simulation. Energy Build. 28, 137–144 (1998). https://doi.org/10.1016/S0378-7788(98)00020-6

    Article  Google Scholar 

  27. Moyne, C.; Didierjean, S.; Amaral Souto, H.P.; da Silveira, O.T.: Thermal Dispersion in Porous Media: one-Equation Model. Int. J. Heat Mass Transf. 43, 3853–3867 (2000). https://doi.org/10.1016/S0017-9310(00)00021-1

    Article  MATH  Google Scholar 

  28. Gabitto, J.; Tsouris, C.: One- and two-equation models to simulate ion transport in charged porous electrodes. Colloids Interfaces 2, 4 (2018). https://doi.org/10.3390/colloids2010004

    Article  Google Scholar 

  29. Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.: Integration of meanline and one-dimensional methods for prediction of pulsating performance of a turbocharger turbine. Energy Convers. Manag. 81, 270–281 (2014). https://doi.org/10.1016/j.enconman.2014.01.043

    Article  Google Scholar 

  30. Jankovic, M.J.; Guzzella, L.; Onder, C.H.; Jankovic, M.J.: Introduction to Modeling and Control of Internal Combustion Engine Systems. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-10775-7

    Book  Google Scholar 

  31. Borutzky, W.; Borutzky, I.W.: Bond Graph Methodology. Springer, London (2010). https://doi.org/10.1007/978-1-84882-882-7

    Book  MATH  Google Scholar 

  32. Salehi, R.; Shahbakhti, M,; Alasty, A,; Vossoughi, G.R.: Control oriented modeling of a radial turbine for a turbocharged gasoline engine. In: 2013 American Control Conference, IEEE, 2013: pp. 5207–5212. https://doi.org/10.1109/ACC.2013.6580648

  33. Rajoo, S.; Martinez-Botas, R.F.: Unsteady effect in a nozzled turbocharger turbine. J. Turbomach. 132, 031001 (2010). https://doi.org/10.1115/1.3142862

    Article  Google Scholar 

  34. Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.: Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions. Energy Convers. Manag. 80, 416–428 (2014). https://doi.org/10.1016/j.enconman.2014.01.047

    Article  Google Scholar 

  35. Rajoo, S.: Steady and Pulsating Performance of a Variable Geometry Mixed Flow Turbocharger Turbine. Department of Mechanical Engineering, Imperial College, London (2007)

    Google Scholar 

Download references

Acknowledgement

This research is financially supported by Universiti Teknologi Malaysia under the Transdiciplinary Research grant (Vot No. 06G77) and Professional Development Research University grant (Vot No 04E02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saiful Amri Mazlan or Fitrian Imaduddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahiuddin, I., Mazlan, S.A., Imaduddin, F. et al. A Transient Model of a Variable Geometry Turbocharger Turbine Using a Passive Actuator. Arab J Sci Eng 46, 2565–2577 (2021). https://doi.org/10.1007/s13369-020-05158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05158-2

Keywords

Navigation