Skip to main content
Log in

Study of Electron Dynamics Controlling the Threshold Intensity Dependence on the Gas Pressure in FIR Laser-Induced Breakdown of Molecular Oxygen: Effect of Loss Processes

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current study is dedicated to investigating the electron dynamics of the breakdown and plasma generation in molecular oxygen at a pressure extended from 4.6 to 75 kPa. The breakdown is motivated by far-infrared laser source operational at λ = 10.591 µm, ( ~ 0.12 eV) with pulse width 2τ = 64 ns (FWHM) (Camacho et al. in J Phys D Appl Phys 41(10):105201, 2008). This experiment presumed the presence of a new electron ignition mechanism to produce a specific density of seed electrons in the interaction region as a substitution of the negligible involvement of the photoionization process. The analysis is grounded on adapting the electron cascade model given in our past paper (Evans and Gamal in J Phys D Appl Phys 13(8):1447, 1980). This model well thought out the determination of the threshold intensity as a function of gas pressure taken into account the possible physical processes which may take place in the interaction volume. In doing so, the governing differential equation that defines the variation of the energy of electrons during the laser pulse is solved numerically together with a set of rate equations presenting the change of population of the excited states. The calculated breakdown threshold intensity showed a reasonable agreement with the measured ones, where both indicated weak dependence over the tested pressure range. This behavior is resolved by studying the individual effect of each loss processes involved in the model on the threshold intensity concerning the experimentally assumed density of the initial electrons corresponding to the tested gas pressure range. Besides, to evaluate the precise involvement of the action of the single loss process to the mechanism responsible for plasma production, computations of the temporal variation of the density of electrons are carried out in the presence and absence of the individual loss process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Camacho, J.J.; Dıaz, L.; Santos, M.; Reyman, D.; Poyato, J.M.L.: Optical emission spectroscopy of oxygen plasma induced by IR CO2 pulsed laser. J. Phys. D Appl. Phys. 41(10), 105201 (2008)

    Article  Google Scholar 

  2. Evans, C.; Gamal, Y.-D.: Laser-induced breakdown of helium. J. Phys. D Appl. Phys. 13(8), 1447 (1980)

    Article  Google Scholar 

  3. Zeldovich, Y.B.; Raizer, P.: Cascade ionization of a gas by a light pulse. Zh. Eksperim. i. Teor. Fiz. 47 (1964)

  4. Askaryan, G.; Rabinovich, M.: Cascade ionization of a medium under the action of an intense light flash. Zh. Eksperim. I Teor. Fiz. 48 (1965)

  5. Chan, C.H.; Moody, C.D.: Solutions of the classical Boltzmann equation for He and Ne gas breakdown. J. Appl. Phys. 45, 1105–1111 (1974). https://doi.org/10.1063/1.1663375.

    Article  Google Scholar 

  6. Nielsen, P.; Canavan, G.: Electron cascade theory in laser-induced breakdown of preionized gases. J. Appl. Phys. 44(9), 4224–4225 (1973)

    Article  Google Scholar 

  7. Louis-Jacquet, M.; Decoster, A.: Theoretical study of the laser-induced electron cascade in a gas. J. Phys. B: At. Mol. Phys. 10(2), 197 (1977)

    Article  Google Scholar 

  8. Gamal, Y.E.-D.; Omar, M.: Study of the electron kinetic processes in laser-induced breakdown of electronegative gases over an extended wavelength range. Radiat. Phys. Chem. 62(5–6), 361–370 (2001)

    Article  Google Scholar 

  9. Chan, C.; Moody, C.; McKnight, W.: Significant loss mechanisms in gas breakdown at 10.6 μ. J. Appl. Phys. 44(3), 1179–1188 (1973)

    Article  Google Scholar 

  10. Stricker; Parker, J.G.: Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1064 μ. J. Appl. Phys. 53, 851 (1982). https://doi.org/10.1063/1.330592.

    Article  Google Scholar 

  11. Phuoc, T.X.: Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases. Opt. Commun. 175(4–6), 419–423 (2000)

    Article  Google Scholar 

  12. Khan, N.; Mariun, N.; Aris, I.; Yeak, J.: Laser-triggered lightning discharge. New J. Phys. 4, 61.1–61.20 (2002)

  13. Camacho, J.J.; Poyato, J.M.L.; Diaz, L.; Santos, M.: Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses. J. Phys. B: At. Mol. Opt. Phys. 40(24), 4573–4590 (2007). https://doi.org/10.1088/0953-4075/40/24/003.

    Article  Google Scholar 

  14. Generalonv, A.; Zimakovv, P.; Kozlov, I.; Masyicovv, A.; Raizer, Y.P.: Sov. Phys. JETP Lett. 11, 222 (1970)

    Google Scholar 

  15. Berger, P.J.; Smith, D.C.: Gas breakdown in the laser as the limitation of pulsed high-pressure CO2 lasers. Appl. Phys. Lett. 21(4), 167–170 (1973)

    Article  Google Scholar 

  16. Hull, R.J.; Lencioni, D.E.; Marquet, C.: Laser Interaction and Related Plasma Phenomena Vol 11. Schwarz, H.J.; Hora, H. (eds.) Plenum, New York (1972)

  17. Lowder, J.E.; Lencioni, D.E.; Hilton, T.W.; Hull, R.J.: High energy pulsed CO2 laser-target interactions in air. J. Appl. Phys. 44(6), 2759–2762 (1973). https://doi.org/10.1063/1.1662646.

    Article  Google Scholar 

  18. Lencioni, D.E.: The effect of dust on 10.6-μm laser-induced air breakdown. Appl. Phys. Lett. 23, 12 (1973). https://doi.org/10.1063/1.1654718.

    Article  Google Scholar 

  19. Morgan, F.: AWRE Report No. SPA2 N 20174 (1974).

  20. Brown, R.T.; Smith, D.C.: Laser-induced gas breakdown in the presence of preionization. Appl. Phys. Lett. 22(5), 245–247, 1973

    Article  Google Scholar 

  21. Bass, M.; Barrett, H.H.: Laser-induced damage probability at 1.06 μm and 0.69 μm. Appl. Opt. 12(4), 690–699 (1973)

  22. Smith, D.: Laser-induced gas breakdown and plasma interaction. In: 38th Aerospace Sciences Meeting and Exhibit (2000)

  23. Camacho, J.J.; Santos, M.; Diaz, L.; Poyato, J.M.L.: Optical emission spectroscopic study of plasma plumes generated by IR CO2 pulsed laser on carbon targets. J. Phys. D: Appl. Phys. 41, 215206–215213 (2008)

    Article  Google Scholar 

  24. Camacho, J.J.; Diaz, L.; Santos, M.; Juan, L.J.; Poyato, J.M.L.: In laser beams: theory, properties and applications. In: Thys, M., Desmet, E. (eds.) Optical Breakdown in Gases induced by High-Power IR CO2 Laser Pulses. Nova Science Publishers, New York (2009)

    Google Scholar 

  25. Camacho, J.J.; Santos, M.; Diaz, L.; Juan, L.J.; Poyato, J.M.L.: Spectroscopy study of air plasma induced by IR CO2 laser pulses. Appl. Phys. A. 99, 159–175, 2010

    Article  Google Scholar 

  26. Diaz, L.; Camacho, J.J.; Cid, J.P.; Martin, M.; Poyato, J.M.L.: Time evolution of the infrared laser ablation plasma plume of SiO. Appl. Phys. A. 117(1), 125–129 (2014)

    Article  Google Scholar 

  27. Camacho, J.J.; Diaz, L.; Martinez-Ramirez, S.; Caceres, J.O.: Time- and space- resolved spectroscopic characterization of laser-induced Swine muscle tissue plasma. Spectrochim. Acta B. 111, 92–101 (2015)

    Article  Google Scholar 

  28. Gamal, Y.E.E.-D.; Nassef, O.; Salama, A.: On the role of the preionization mechanism in the optical breakdown of molecular oxygen induced by CO2 laser: numerical investigation. Phys. Plasma 26, 062116 (2019). https://doi.org/10.1063/1.5092434.

    Article  Google Scholar 

  29. Phelps, A.V.: JILA information Center Report, NO. 28, University of Colorado, Sept. 1. (1985)

  30. Kroll, N.; Watson, K.M.: Theoretical study of ionization of air by intense laser pulses. Phys. Rev. A 5, 1883–1905 (1972}

    Article  Google Scholar 

  31. Itikawa, Y.; Ichimura, A.; Onda, K.; Sakimoto, K.; Takayanagi, K.; Hatano, Y.; Hayashi, M.; Nishimura, H.; Tsurubuchi, S.: Cross sections for collisions of electrons and photons with oxygen molecules. J. Phys. Chem. Ref. Data 18, 23 (1989) (designated as JPCRD89)

    Article  Google Scholar 

  32. Heald, M.A.; Wharton, C.B.: Plasma Diagnostics with Microwaves. Wiley, New York (1965)

    Book  Google Scholar 

  33. Itikawa, Y.: Cross sections for electron collisions with oxygen molecules. J. Phys. Chem. Ref. Data 38, 1–21 (2009)

    Article  Google Scholar 

  34. Jeon, B.H.: Determination of electron collision cross-sections for the oxygen molecule by using an electron swarm study. J. Korean Phys. Soc. 43, 513–525 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. Elsayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamal, Y.E.ED., Elsayed, K.A. & Nassef, O.A. Study of Electron Dynamics Controlling the Threshold Intensity Dependence on the Gas Pressure in FIR Laser-Induced Breakdown of Molecular Oxygen: Effect of Loss Processes. Arab J Sci Eng 46, 5875–5884 (2021). https://doi.org/10.1007/s13369-020-05077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05077-2

Keywords

Navigation