Skip to main content
Log in

Spectroscopy study of air plasma induced by IR CO2 laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A spectroscopic study of ambient air plasma, initially at room temperature and pressures ranging from 32 to 101 kPa, produced by high-power transverse excitation atmospheric (TEA) CO2 laser (λ=9.621 and 10.591 μm; τ FWHM≈64 ns; power densities ranging from 0.29 to 6.31 GW cm−2) has been carried out in an attempt to clarify the processes involved in laser-induced breakdown (LIB) air plasma. The strong emission observed in the plasma region is mainly due to electronic relaxation of excited N, O and ionic fragments N+. The medium-weak emission is due to excited species O+, N2+, O2+, C, C+, C2+, H, Ar and molecular band systems of N \(_{2}^{+}(\) B \(^{2}\varSigma _{\mathrm{u}}^{+}\) –X \(^{2}\varSigma _{\mathrm{g}}^{+})\) , N2(C3 Π u–B3 Π g), N \(_{2}^{+}(\) D2 Π g–A2 Π u) and OH(A2 Σ +–X2 Π). Excitation temperatures of 23400±700 K and 26600±1400 K were estimated by means of N+ and O+ ionic lines, respectively. Electron number densities of the order of (0.5–2.4)×1017 cm−3 and (0.6–7.5)×1017 cm−3 were deduced from the Stark broadening of several ionic N+ and O+ lines, respectively. Estimates of vibrational and rotational temperatures of N \(_{2}^{+}\) electronically excited species are reported. The characteristics of the spectral emission intensities from different species have been investigated as functions of the air pressure and laser irradiance. Optical breakdown threshold intensities in air at 10.591 μm have been measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Rigden, in Macmillan Encyclopedia of Physics (Simon & Schuster, New York, 1996), p. 353

    Google Scholar 

  2. P.D. Maker, R.W. Terhune, C.M. Savage, in Proc. 3rd Int. Conf. Quantum Electronics, vol. 2 (Dunod, Paris, 1963), p. 1559

    Google Scholar 

  3. Y.B. Zeldovich, Y.P. Raiser, Sov. Phys. JETP 21, 190 (1965)

    Google Scholar 

  4. H.B. Bebb, A. Gold, in Multiphoton Ionization of Hydrogen and Rare Gas Atoms, Physics of Quantum Electronics, ed. by P.L. Kelly et al. (McGraw-Hill, New York, 1966)

    Google Scholar 

  5. C. De Michelis, IEEE J. Quantum Electron. 5, 18 (1969)

    Google Scholar 

  6. N.R. Isenor, M.C. Richardson, Appl. Phys. Lett. 18, 224 (1971)

    Article  ADS  Google Scholar 

  7. J.L. Lyman, R.J. Jensen, Chem. Phys. Lett. 13, 421 (1972)

    Article  ADS  Google Scholar 

  8. C.G. Morgan, Rep. Prog. Phys. 38, 621 (1975)

    Article  ADS  Google Scholar 

  9. D.I. Rosen, G. Weyl, J. Phys. D, Appl. Phys. 20, 1264 (1987)

    Article  ADS  Google Scholar 

  10. J.L. Lyman, G.P. Quigley, O.P. Judo, in Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, ed. by C.D. Cantrell (Springer, Berlin, 1980)

    Google Scholar 

  11. Y.E.E.-D. Gamal, J. Phys D, Appl. Phys. 21, 1117 (1988)

    Article  ADS  Google Scholar 

  12. G. Bekefi G, Principles of Laser Plasma (Wiley, New York, 1976)

    Google Scholar 

  13. L.J. Radziemski, D. Cremers, Laser Induced Plasma and Applications (Dekker, New York, 1989)

    Google Scholar 

  14. F.-Y. Yueh, J.P. Singh, H. Zhang, in Encyclopedia of Analytical Chemistry (Laser-Induced Breakdown Spectroscopy, Elemental Analysis), ed. by R.A. Meyers (Wiley, Chichester, 2000)

    Google Scholar 

  15. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, Chichester, 2006)

    Book  Google Scholar 

  16. A.W. Miziolek, V. Palleschi, I. Schechter, Laser-Induced Breakdown Spectroscopy (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  17. C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, J. Braz. Chem. Soc. 18, 463 (2007)

    Article  Google Scholar 

  18. J.P. Singh, S.N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, New York, 2007)

    Google Scholar 

  19. J. Kasparian, J.M. Rodríguez, G. Menean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.B. Andre, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Woste, Science 301, 61 (2003)

    Article  ADS  Google Scholar 

  20. R.G. Meyerand Jr., A.F. Haught, Phys. Rev. Lett. 11, 401 (1963)

    Article  ADS  Google Scholar 

  21. B. Fontaine, F. Vidal, D. Comtois, C.Y. Chien, A. Desparois, T.W. Johnston, J.C. Kieffer, H.P. Mercure, H. Pepin, F.A.M. Rizk, IEEE Trans. Plasma Sci. 27, 688 (1999)

    Article  ADS  Google Scholar 

  22. F. Vidal, D. Comtois, C.Y. Chien, A. Desparois, B. Fontaine, T.W. Johnston, J.C. Kieffer, H.P. Mercure, H. Pepin, F.A. Rizk, IEEE Trans. Plasma Sci. 28, 418 (2000)

    Article  ADS  Google Scholar 

  23. H. Sobral, M. Villagran-Muniz, R. Navarro-González, A. Raga, Appl. Phys. Lett. 77, 3158 (2000)

    Article  ADS  Google Scholar 

  24. A.C. Raga, R. Navarro-González, M. Villagran-Muniz, Rev. Mex. Astr. Astrof. 36, 67 (2000) (English translation available from the NASA Astrophysics Data System website)

    ADS  Google Scholar 

  25. P. Montgolfier, P. Dumont, Y. Mille, J. Villermaux, J. Phys. Chem. 76, 31 (1972)

    Article  Google Scholar 

  26. R.J. Nordstrom, Appl. Spectrosc. 49, 1490 (1995)

    Article  ADS  Google Scholar 

  27. S. Yalcin, D.R. Crosley, G.P. Smith, G.W. Faris, Appl. Phys. B, Lasers Opt. 68, 121 (1999)

    Article  ADS  Google Scholar 

  28. M.Z. Martin, M.D. Cheng, R.C. Martin, Aerosol Sci. Technol. 31, 409 (1999)

    Article  Google Scholar 

  29. F. Martin, F. Mawassi, I. Vidal, D. Gallimberti, H. Comtois, H. Pepin, J.C. Kieffer, H.P. Mercure, Appl. Spectrosc. 56, 1444 (2002)

    Article  ADS  Google Scholar 

  30. T.X. Phuoc, Opt. Commun. 175, 419 (2000)

    Article  ADS  Google Scholar 

  31. N. Kawahara, J.L. Beduneu, T. Nakayama, E. Tomita, Y. Ikeda, Appl. Phys. B 86, 605 (2007)

    Article  ADS  Google Scholar 

  32. Y.L. Chen, J.W.L. Lewis, C. Parigger, J. Quantum Spectrosc. Rad. Trans. 67, 91 (2000)

    Article  ADS  Google Scholar 

  33. M. Milan, J.J. Laserna, Spectrochim. Acta B 56, 275 (2000)

    Article  ADS  Google Scholar 

  34. J. Beduneau, Y. Ikeda, J. Quantum Spectrosc. Rad. Trans. 84, 123 (2003)

    Article  ADS  Google Scholar 

  35. A.J. Alcock, K. Kato, M.C. Richardson, Opt. Commun. 6, 342 (1968)

    Article  ADS  Google Scholar 

  36. A.F. Haught, R.G. Meyerand, D.C. Smith, in Physics of Quantum Electronics, ed. by P.L. Kelley, B. Lax, P.E. Tannenwald (McGraw-Hill, New York, 1966), p. 509

    Google Scholar 

  37. C. De Michelis, Opt. Commun. 2, 255 (1970)

    Article  ADS  Google Scholar 

  38. C.L.M. Ireland, J. Phys. D, Appl. Phys. 7, L179 (1974)

    Article  ADS  Google Scholar 

  39. C.L.M. Ireland, C.G. Morgan, J. Phys. D, Appl. Phys. 6, 720 (1973)

    Article  ADS  Google Scholar 

  40. C.L.M. Ireland, C.G. Morgan, J. Phys. D, Appl. Phys. 7, L87 (1974)

    Article  ADS  Google Scholar 

  41. C.M.L. Ireland, A. Yi, J.M. Aaron, C.G. Morgan, Appl. Phys. Lett. 24, 175 (1974)

    Article  ADS  Google Scholar 

  42. J.M. Aaron, C.L.M. Ireland, C.G. Morgan, J. Phys. D, Appl. Phys. 7, 1907 (1974)

    Article  ADS  Google Scholar 

  43. T.X. Phuoc, C.M. White, Opt. Commun. 175, 419 (2000)

    Article  ADS  Google Scholar 

  44. R.G. Tomlinson, Phys. Rev. Lett. 14, 489 (1965)

    Article  ADS  Google Scholar 

  45. R.G. Tomlinson, E.K. Damon, H.T. Buscher, in Physics of Quantum Electronics, ed. by P.L. Kelley, B. Lax, P.E. Tannenwald (McGraw-Hill, New York, 1966), p. 520

    Google Scholar 

  46. W.E. Williams, M.J. Soileau, E.W. Stryland, Appl. Phys. Lett. 43, 352 (1983)

    Article  ADS  Google Scholar 

  47. C.H. Chan, C.D. Moody, W.K. McKnight, J. Appl. Phys. 44, 1179 (1973)

    Article  ADS  Google Scholar 

  48. E.V. Zhuzhukalo, A.N. Kolomiski, A.F. Nastoyashchi, L.N. Plyashkevich, J. Quantum Electron. 11, 670 (1981)

    Article  ADS  Google Scholar 

  49. J.J. Camacho, J.M.L. Poyato, L. Diaz, M. Santos, J. Phys. B, At. Mol. Opt. Phys. 40, 4573 (2007)

    Article  ADS  Google Scholar 

  50. J.J. Camacho, M. Santos, L. Diaz, J.M.L. Poyato, Appl. Phys. A 94, 373 (2009)

    Article  ADS  Google Scholar 

  51. J.J. Camacho, L. Diaz, M. Santos, D. Reyman, J.M.L. Poyato, J. Phys. D, Appl. Phys. 41, 105201 (2008)

    Article  ADS  Google Scholar 

  52. J.J. Camacho, J.M.L. Poyato, L. Diaz, M. Santos, J. Appl. Phys. 102, 103302 (2007)

    Article  ADS  Google Scholar 

  53. J.J. Camacho, M. Santos, L. Diaz, J.M.L. Poyato, J. Phys. D, Appl. Phys. 41, 215206 (2008)

    Article  ADS  Google Scholar 

  54. NIST Atomic Spectra Database online at http://physics.nist.gov/PhysRefData/ASD/index.html

  55. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    ADS  Google Scholar 

  56. G. Herzberg, Ergeb. Exakten Naturwiss. 10, 207 (1931)

    Article  Google Scholar 

  57. W.C. Martin, R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983)

    Article  ADS  Google Scholar 

  58. H.R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974)

    Google Scholar 

  59. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  60. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1977)

    Google Scholar 

  61. R.W.P. McWhirter, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic, New York, 1965), Chap. 5

    Google Scholar 

  62. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950)

    Google Scholar 

  63. A.D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)

    Google Scholar 

  64. Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991)

    Google Scholar 

  65. T.L. Kopiczynski, M. Bogdan, A.W. Kalin, H.J. Schotwau, F.K. Kneubuhl, Appl. Phys. B, Photophys. Laser Chem. 54, 526 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camacho, J.J., Santos, M., Díaz, L. et al. Spectroscopy study of air plasma induced by IR CO2 laser pulses. Appl. Phys. A 99, 159–175 (2010). https://doi.org/10.1007/s00339-009-5466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5466-x

PACS

Navigation