Skip to main content
Log in

Reconfiguration and Optimal Micro-Phasor Unit Placement in a Distribution System Using Taguchi-Binary Particle Swarm Optimization

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The concepts of smart grid and microgrid require new monitoring systems to support automation functionalities in control centers at electrical distribution system (EDS) level. The availability of micro-PMUs (\(\upmu \)PMUs) nowadays equips the control centers with the necessary information, which improves the accuracy of distribution system state estimation, for its various applications. Further, a non-configured EDS involves a significant amount of active power losses that causes additional costs to utilities. The work presented in this paper introduces a generalized, two-stage robust methodology for optimal \(\upmu \)PMU placement considering reconfiguration of the EDS. This hybrid method combines the Taguchi method and upgraded version of binary particle swarm optimization (BPSO) that ultimately provides fast and accurate global optimum. The Taguchi method engenders a more diversified population, which eventually evades premature convergence, and consequently, it makes BPSO more robust. The proposed methodology provides optimal solution for any radial distribution system. Here, for illustration, results obtained for standard IEEE-33 nodes feeder system have been given to demonstrate the behavior and viability of the referred methodology. Various case studies under complex conditions along with the comparative analysis with the existing methods have been carried out to corroborate the superiority and versatility of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TIBPSO:

Taguchi integrated binary particle swarm optimization

DSSE:

Distribution system state estimation

EDS:

Electrical distribution system

OA:

Orthogonal array

APLM:

Active power loss minimization

\(\upmu \)PMU:

Micro-phasor measurement unit

OmPP:

Optimal micro-PMU placement

TM:

Taguchi method

BPSO:

Binary particle swarm optimization

\(F_\mathrm{T}\) :

EDS total power loss in configuration

y :

Position of particle

J :

Cost function

T :

Represents configuration

H :

Vector matrix for 7-node feeder

\(c_{mk}\) :

\(m-k\) switch state

\(g_{mk}\) :

\(m-k\) branch conductance

\(A^{\mathrm{in}}\) :

Bus incidence matrix

StNR:

Signal to noise ratio

\(N_T\) :

Branch numbers on T configuration

p :

Number of particles

d :

Dimension of search space

P :

Bus real power injection

DE :

Denotes 2 levels of OA

M :

Number of experiments

mk :

Bus indices

\(\theta \) :

Bus phase angle

N :

Number of nodes

\({\hat{\mathrm{fit}}}\) :

Fitness function

v :

Velocity of particle

\('\) :

Transpose

\({\hat{b}}\) :

Vector of 1s or greater than 1

\(c_1,c_2\) :

Acceleration constant

\(f_\mathrm{v}\) :

Fitness value

pbest:

Particle best

gbest:

Global best

\(\gamma \) :

Penalty factor

ij :

Indices

\(r_1\),\(r_2\) :

Random variables

A :

Connectivity matrix

R :

Redundancy level

Y :

Position vector

W :

Cost vector

C :

Measurement redundancy

l :

Number of levels

\(K,\phi \) :

Constants

f :

Observability constraint

V :

Bus voltage

G :

Initial population matrix

t :

Iteration number

\(\omega m\) :

Set of buses neighbors to m

g :

Variable

\(N_{\mathrm{NO}}\) :

unobservable nodes

Q :

Bus reactive power injection

w :

Inertia weight

References

  1. Jasthi, K.; Das, D.: Simultaneous distribution system reconfiguration and DG sizing algorithm without load flow solution. IET Gener. Transm. Distrib. 12(6), 1303–1313 (2018)

    Article  Google Scholar 

  2. Cruz, M.A.R.S.; Rocha, H.R.O.; Paiva, M.H.M.; Segatto, M.E.V.; Camby, E.; Caporossi, G.: An algorithm for cost optimization of PMU and communication infrastructure in WAMS. Int. J. Electr. Power Energy Syst. 106, 96–104 (2019)

    Article  Google Scholar 

  3. Shahsavari, A.; Sadeghi-Mobarakeh, A.; Stewart, E.; Alvarez, L.; Megala, F.; Mohsenian-Rad, H.: Distribution grid reliability versus regulation market efficiency: an analysis based on micro-PMU data. IEEE Trans. Smart Grid 8(6), 2916–2925 (2017)

    Article  Google Scholar 

  4. Yang, X.; Zhang, X.P.; Zhou, S.: Coordinated algorithms for distributed state estimation with synchronized phasor measurements. Appl. Energy 96, 253–260 (2012)

    Article  Google Scholar 

  5. Welikala, S.; Thelasingha, N.; Akram, M.; Ekanayake, P.B.; Godaliyadda, R.I.; Ekannayake, J.B.: Implementation of a robust real-time non-intrusive load monitoring solution. Appl. Energy 238, 1519–1529 (2019)

    Article  Google Scholar 

  6. Von Meier, A.; Stewart, E.; Mceachern, A.; Andersen, M.; Mehrmanesh, L.: Precision microsynchrophasors for distribution systems: a summary of applications. IEEE Trans. Smart Grid 8(6), 2926–2936 (2017)

    Article  Google Scholar 

  7. Chen, J.; Zhu, Q.: A game-theoretic framework for resilient and distributed generation control of renewable energies in microgrids. IEEE Trans. Smart Grid 8(1), 285–295 (2017)

    Article  Google Scholar 

  8. Xu, J.; Wang, J.; Liao, S.; Sun, Y.; Ke, D.; Li, X.: Stochastic multi-objective optimization of photovoltaics integrated three-phase distribution network based on dynamic scenarios. Appl. Energy 231, 985–996 (2018)

    Article  Google Scholar 

  9. Nazari-Heris, M.; Mohammadi-Ivatloo, B.: Application of heuristic algorithms to optimal PMU placement in electric power systems: an updated review. Renew. Sustain. Energy Rev. 50, 214–228 (2015)

    Article  Google Scholar 

  10. Jamei, M.; Scaglione, A.; Roberts, C.; Stewart, E.; Peisert, S.; McParland, C.: Anomaly detection using optimally-placed \(\mu \)PMU sensors in distribution grids. IEEE Trans. Power Syst. 33(4), 3611–3623 (2018)

    Article  Google Scholar 

  11. Chen, X.; Chen, T.; Tseng, K.J.; Sun, Y.; Amaratunga, G.: Hybrid approach based on global search algorithm for optimal placement of \(\mu \)PMU in distribution networks, pp. 559–563. In: IEEE Conference Innovative Smart Grid Technology, Asia (2016)

  12. Teimourzadeh, S.; Aminifar, F.; Shahidehpour, M.: Contingency-constrained optimal placement of micro-PMUs and smart meters in microgrids. IEEE Trans. Smart Grid 10(2), 1889–1897 (2019)

    Article  Google Scholar 

  13. Rakpenthai, C.; Premrudeepreechacharn, S.; Uatrongjit, S.; Watson, N.R.: An optimal PMU placement method against measurement loss and branch outage. IEEE Trans. Power Deliv. 22(1), 101–107 (2007)

    Article  Google Scholar 

  14. Shirmohammadi, D.; Hong, H.W.: Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Trans. Power Deliv. 4(2), 1492–1498 (1989)

    Article  Google Scholar 

  15. Abdelaziz, M.: Distribution network reconfiguration using a genetic algorithm with varying population size. Electr. Power Syst. Res. 142, 9–11 (2017)

    Article  Google Scholar 

  16. Su, C.T.; Chang, C.F.; Chiou, J.P.: Distribution network reconfiguration for loss reduction by ant colony search algorithm. Electr. Power Syst. Res. 75, 190–199 (2005)

    Article  Google Scholar 

  17. Flaih, F.M.F.; Lin, X.; Abd, M.K.; Dawoud, S.M.; Li, Z.; Adio, O.S.: A new method for distribution network reconfiguration analysis under different load demands. Energies 10, 1–19 (2017)

    Article  Google Scholar 

  18. Azad-Farsani, E.; Zare, M.; Azizipanah-Abarghooee, R.; Askarian-Abyaneh, H.: A new hybrid CPSO-TLBO optimization algorithm for distribution network reconfiguration. J. Intell. Fuzzy Syst. 26, 2175–2184 (2014)

    Article  Google Scholar 

  19. Lavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R.: Imposing radiality constraints in distribution system optimization problems. IEEE Trans. Power Syst. 27, 172–180 (2012)

    Article  Google Scholar 

  20. Dua, D.; Dambhare, S.; Gajbhiye, R.K.; Soman, S.A.: Optimal multistage scheduling of PMU placement: An ILP approach. IEEE Trans. Power Deliv. 23, 1812–1820 (2008)

    Article  Google Scholar 

  21. Vedik, B.; Chandel, A.K.: Optimal PMU placement for power system observability using Taguchi binary bat algorithm. Int. J. Meas. 95, 8–20 (2017)

    Article  Google Scholar 

  22. Mishra, C.; Jones, K.D.; Pal, A.; Centeno, V.A.: Binary particle swarm optimisation-based optimal substation coverage algorithm for phasor measurement unit installations in practical systems. IET Gener. Transm. Distrib. 10, 555–562 (2016)

    Article  Google Scholar 

  23. Chandrasekaran, K.; Simon, S.P.: Binary/real coded particle swarm optimization for unit commitment problem, pp. 1–6. In: International Conference on Power Signals Control & Computation EPSCICON (2012)

  24. Dong, J.; Li, Q.; Deng, L.: Design of fragment-type antenna structure using an improved BPSO. IEEE Trans. Antennas Propag. 66, 564–571 (2018)

    Article  Google Scholar 

  25. Sambaiah, K.S.; Jayabarathi, T.: Optimal reconfiguration and renewable distributed generation allocation in electric distribution systems. Int. J. Ambient Energy. https://doi.org/10.1080/01430750.2019.1583604

  26. Hanis, N.; Rahman, A.; Zobaa, A.F.: Integrated mutation strategy with modified binary PSO algorithm for optimal PMUs placement. IEEE Trans. Ind. Inform. 13(6), 3124–3133 (2017)

    Article  Google Scholar 

  27. Mirjalili, S.; Gandomi, A.H.: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  28. US Department: factors affecting PMUs installation cost. Recovery Act Smart Grid Programs (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukriti Tiwari.

Appendix

Appendix

An orthogonal array with seven factors and each factor consisting of two levels denoted by letters D and E with symbolization as \(L_8(2^7)\) is given in Table 10.

Table 10 Orthogonal array

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Kumar, A. Reconfiguration and Optimal Micro-Phasor Unit Placement in a Distribution System Using Taguchi-Binary Particle Swarm Optimization. Arab J Sci Eng 46, 1213–1223 (2021). https://doi.org/10.1007/s13369-020-04973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04973-x

Keywords

Navigation