Skip to main content
Log in

Fabrication and Characterization of UHMWPE–Ni Composites for Enhanced Electromagnetic Interference Shielding

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nickel-plated ultrahigh molecular weight polyethylene (UHMWPE) samples were prepared by an electroless coating method followed by hot pressing. The concentration of Ni in the composites was varied between 3.98 and 10.88 in volume percentage. XRD results revealed that Ni coating was successfully realized on the surface of UHWMPE particles confirmed by SEM–EDS. Ni thickness on the UHMWPE particles has thickness of 2 μm and there was also self-precipitated Ni plates as well as additive Ni particles according to SEM. Hardness values of Ni-coated UHMWPE–Ni composites increased 30% with increasing Ni content. The EMI-SE of the composite increased from 49 up to 70 dB by increasing Ni content for both X and Ku-band with respect to Ni concentration. Our samples, performed very high shielding within X band and also Ku band compared to most of other reports in the open literature, can be suitable for high-performance requirements especially in aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cerezci, O.: Görülmez-Duyulmaz Risk “Elektromagnetik Alan Kirliliği.” Nilufer Belediyesi (2017)

  2. Mohan, R.R.; Varma, S.J.; Jayalekshmi, S.: Effective electromagnetic shield using conductive polyaniline films. Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.02.125

    Article  Google Scholar 

  3. Wang, J.; Ni, M.; Wu, F.; Liu, S.; Qin, J.; Zhu, R.: Electromagnetic radiation based continuous authentication in edge computing enabled internet of things. J. Syst. Archit. (2018). https://doi.org/10.1016/J.SYSARC.2018.12.003

    Article  Google Scholar 

  4. Morari, C.; Balan, I.; Pintea, J.; Chitanu, E.; Iordache, I.: Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Prog. Electromagn. Res. 21, 93–104 (2011)

    Article  Google Scholar 

  5. Wang, R.; Yang, H.; Wang, J.; Li, F.: The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber. Polym. Test. 38, 53–56 (2014). https://doi.org/10.1016/j.polymertesting.2014.06.008

    Article  Google Scholar 

  6. Singh, A.K.; Shishkin, A.; Koppel, T.; Gupta, N.: A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 149, 188–197 (2018). https://doi.org/10.1016/j.compositesb.2018.05.027

    Article  Google Scholar 

  7. Lu, L.; Xie, Y.; Teh, K.S.; Tang, Y.; Wan, Z.; Xing, D.: Highly flexible and ultra-thin Ni-plated carbon–fabric/polycarbonate film for enhanced electromagnetic interference shielding. Carbon 132, 32–41 (2018). https://doi.org/10.1016/j.carbon.2018.02.001

    Article  Google Scholar 

  8. Wang, C.; Liu, Y.; Zhao, M.; Ye, F.; Cheng, L.: Three-dimensional graphene/SiBCN composites for high-performance electromagnetic interference shielding. Ceram. Int. 44, 22830–22839 (2018). https://doi.org/10.1016/j.ceramint.2018.09.074

    Article  Google Scholar 

  9. Xu, Y.; Yang, Y.; Yan, D.-X.; Duan, H.; Zhao, G.; Liu, Y.: Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chem. Eng. J. 360, 1427–1436 (2019). https://doi.org/10.1016/j.cej.2018.10.235

    Article  Google Scholar 

  10. Fujii, S.; Hamasaki, H.; Takeoka, H.; Tsuruoka, T.; Akamatsu, K.; Nakamura, Y.: Electroless nickel plating on polymer particles. J. Colloid Interface Sci. 430, 47–55 (2014). https://doi.org/10.1016/j.jcis.2014.05.041

    Article  Google Scholar 

  11. Smirnova, M.N.; Tyurenkova, V.V.; Kosinov, S.N.; Nikitin, V.F.: High-frequency electromagnetic radiation affecting moving conductive screens. Acta Astronaut. (2019). https://doi.org/10.1016/j.actaastro.2019.03.004

    Article  Google Scholar 

  12. Chen, L.F.: Microwave Electronics: Measurement and Materials Characterization. Wiley, New York (2004)

    Book  Google Scholar 

  13. Schelkunoff, S.A.: Electromagnetic Waves. Hardcover, New York (1943)

    Google Scholar 

  14. Schulz, R.B.; Plantz, V.C.; Brush, D.R.: Shielding theory and practice. IEEE Trans. Electromagn. Compat. 30, 187–201 (1988). https://doi.org/10.1109/15.3297

    Article  Google Scholar 

  15. ASTM D4935-99: Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials (1999). https://doi.org/10.1520/D4935-99

  16. ASTM ES7-83: Test Method for Electromagnetic Shielding Effectiveness of Planar Materials. ASTM, New York (1983). https://doi.org/10.1520/ES7-83

    Book  Google Scholar 

  17. IEEE Electromagnetic Compatibility Society. Standards Development Committee., Institute of Electrical and Electronics Engineers., IEEE-SA Standards Board., IEEE standard method for measuring the shielding effectiveness of enclosures and boxes having all dimensions between 0.1 and 2 m, pp 1–84. https://doi.org/10.1109/IEEESTD.2014.6712029

  18. USA Department of Defense: MIL-STD-285 Military Standard Attenuation Measurements for Enclosures Electromagnetic Shielding, for Electronic Test Purposes. Washington, DC (1956)

  19. Araz, İ.: The measurement of shielding effectiveness for small-in-size ferrite-based flat materials. Turk. J. Electr. Eng. Comput. Sci. 26, 2996–3006 (2018). https://doi.org/10.3906/elk-1803-162

    Article  Google Scholar 

  20. Nicolson, A.M.: Broad-band microwave transmission characteristics from a single measurement of the transient response. IEEE Trans. Instrum. Meas. 17, 395–402 (1968). https://doi.org/10.1109/TIM.1968.4313741

    Article  Google Scholar 

  21. Nicolson, A.M.; Ross, G.F.: Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  22. Weir, W.B.: Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974). https://doi.org/10.1109/PROC.1974.9382

    Article  Google Scholar 

  23. Holloway, C.L.; Hill, D.A.; Ladbury, J.; Koepke, G.; Garzia, R.: Shielding effectiveness measurements of materials using nested reverberation chambers. IEEE Trans. Electromagn. Compat. 45, 350–356 (2003). https://doi.org/10.1109/TEMC.2003.809117

    Article  Google Scholar 

  24. Wilson, P.F.; Ma, M.T.; Adams, J.W.: Techniques for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation. IEEE Trans. Electromagn. Compat. 30, 239–250 (1988). https://doi.org/10.1109/15.3302

    Article  Google Scholar 

  25. Liao, F.; Han, X.; Zhang, Y.; Xu, C.; Chen, H.: Carbon fabrics coated with nickel film through alkaline electroless plating technique. Mater. Lett. 205, 165–168 (2017). https://doi.org/10.1016/j.matlet.2017.06.087

    Article  Google Scholar 

  26. Zhou, E.; Xi, J.; Guo, Y.; Liu, Y.; Xu, Z.; Peng, L.; Gao, W.; Ying, J.; Chen, Z.; Gao, C.: Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133, 316–322 (2018). https://doi.org/10.1016/J.CARBON.2018.03.023

    Article  Google Scholar 

  27. Celebi Efe, G.; Altinsoy, I.; Türk, S.; Bindal, C.; Ucisik, A.H.: Effect of particle size on microstructural and mechanical properties of UHMWPE–TiO2 composites produced by gelation and crystallization method. J. Appl. Polym. Sci. 136, 15–18 (2019). https://doi.org/10.1002/app.47402

    Article  Google Scholar 

  28. Al-Saleh, M.H.: Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth. Met. 205, 78–84 (2015). https://doi.org/10.1016/j.synthmet.2015.03.032

    Article  Google Scholar 

  29. Ecco, L.; Dul, S.; Schmitz, D.; Barra, G.; Soares, B.; Fambri, L.; Pegoretti, A.: Rapid prototyping of efficient electromagnetic interference shielding polymer composites via fused deposition modeling. Appl. Sci. 9, 37 (2018). https://doi.org/10.3390/app9010037

    Article  Google Scholar 

  30. Li, Y.; Li, C.; Zhao, S.; Cui, J.; Zhang, G.; Gao, A.; Yan, Y.: Facile fabrication of highly conductive and robust three-dimensional graphene/silver nanowires bicontinuous skeletons for electromagnetic interference shielding silicone rubber nanocomposites. Compos. Part A 119, 101–110 (2019). https://doi.org/10.1016/j.compositesa.2019.01.025

    Article  Google Scholar 

  31. Lyu, J.; Zhao, X.; Hou, X.; Zhang, Y.; Li, T.; Yan, Y.: Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite. Compos. Sci. Technol. 149, 159–165 (2017). https://doi.org/10.1016/j.compscitech.2017.06.026

    Article  Google Scholar 

  32. Wen, B.; Wang, X.; Zhang, Y.: Ultrathin and anisotropic polyvinyl butyral/Ni–graphite/short-cut carbon fibre film with high electromagnetic shielding performance. Compos. Sci. Technol. 169, 127–134 (2018). https://doi.org/10.1016/j.compscitech.2018.11.013

    Article  Google Scholar 

  33. Ji, X.; Chen, D.; Shen, J.; Guo, S.: Accepted manuscript flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.03.293

    Article  Google Scholar 

  34. Jiyong, H.; Guohao, L.; Junhui, S.; Xudong, Y.; Xin, D.: Improving the electromagnetic shielding of nickel/polyaniline coated polytrimethylene-terephthalate knitted fabric by optimizing the electroless plating conditions. Text. Res. J. 87, 902–912 (2017). https://doi.org/10.1177/0040517516641361

    Article  Google Scholar 

  35. Sheng, A.; Yang, Y.; Ren, W.; Duan, H.; Liu, B.; Zhao, G.; Liu, Y.: Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection. J. Mater. Sci. Mater. Electron. 30, 14669–14678 (2019). https://doi.org/10.1007/s10854-019-01838-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Sakarya University Electromagnetic Research Center (SEMAM) for providing its technical infrastructure during experimental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yener.

Ethics declarations

Conflict of interest

Authors state no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celebi Efe, G., Altinsoy, I., Yener, S.Ç. et al. Fabrication and Characterization of UHMWPE–Ni Composites for Enhanced Electromagnetic Interference Shielding. Arab J Sci Eng 46, 5455–5465 (2021). https://doi.org/10.1007/s13369-020-04952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04952-2

Keywords

Navigation