Skip to main content

Advertisement

Log in

Effects of Variable Viscosity on Asymmetric Flow of Non-Newtonian Fluid Driven Through an Expanding/Contracting Channel Containing Porous Walls

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Flow in porous channel or pipe has attained significant attention in biophysics, especially when the walls are contracting or expanding. The purpose of this work is to explore the effects of variable viscosity on the asymmetric laminar flow of Casson fluid (CF) with thermal radiation in an expanding/contracting channel having porous walls. The flow equations, by using appropriate transformations, are reduced to ordinary differential equations (ODEs). The method of homotopy analysis (HAM) is used to obtain the expressions for the velocity field along with the temperature profile. Graphs are portrayed for different parametric values and analyzed in detail for the consequent dynamic attributes, especially the viscosity-dependent parameter, CF parameter, and the expansion ratio. CF parameter escalates the velocity of the fluid near the lower wall, but after mid-way, it starts decreasing. The fluid velocity due to temperature-dependent (TD) viscosity parameter is more noteworthy for Newtonian fluid (NF) relative to non-Newtonian (NN) fluid. As anticipated, the radiation parameter causes the fluid to heat up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

u, v :

Velocity components in the x- and y-directions [ms−1]

x, y :

Spatial coordinates [m]

t :

Time [s]

T f :

Fluid temperature [K]

T0, Tw :

Fluid temperature at walls [K]

B 0 :

Magnetic field intensity,

p * :

Fluid pressure [kg m−1 s−2]

Pr :

Prandtl number [–]

e ij :

(i,j)th components deformation rate

p y :

Yield stress of Casson fluid

C p :

Specific heat

q :

Dimensionless temperature

q r :

Radiative heat flux

K :

Thermal conductivity [Wm−1 K−1]

A0, A1 :

Both wall permeabilities

A :

Ratio parameter [–]

l1, l2 :

Linear operator

p :

Embedding parameter

K * :

Mean adsorption coefficient

Nr :

Radiation parameter [–]

b :

Half-width of the channel [m]

R0, R1 :

Permeation Reynolds numbers

N1, N2 :

Nonlinear operator

\(\alpha\) :

Wall expansion ratio

\(\mu \left( {T_{f} } \right)\) :

Temperature-dependent viscosity [= \(\mu_{0} \mu \left( q \right)\)]

\(\rho\) :

Fluid density [kg m−3]

\(\beta\) :

Casson fluid parameter [–]

\(\delta\) :

Electric conductivity [sm−1]

\(\beta_{0}\) :

Magnetic field intensity [T]

\(\mu_{0}\) :

Plastic dynamic viscosity of the non-Newtonian fluid [kg m−1 s−1]

\(\eta\) :

Transformed coordinate

\(\varepsilon\) :

Viscosity variation parameter [–]

\(\alpha\) :

Expansion ratio

\(\pi\) :

Product of the components of deformation rate with itself

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\(\pi_{c}\) :

Critical value of this product

References

  1. Asghar, S.; Mushtaq, M.; Kara, A.H.: Exact solutions using symmetry methods and conservation laws for the viscous flow through expanding-contracting channels. Appl. Math. Model. 32(12), 2936–2940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sibanda, P.; Makukula, Z.G.; Motsa, S.S.: A novel numerical technique for two-dimensional laminar flow between two moving porous walls. Math. Probl. Eng. 2010, 528956 (2010). https://doi.org/10.1155/2010/528956

    Article  MathSciNet  MATH  Google Scholar 

  3. Si, X.; Pan, M.; Zheng, L.; Zhou, J.; Li, L.: The solutions for the flow of micropolar fluid through an expanding or contracting channel with porous walls. Bound. Value Probl. 2016(1), 176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sobamowo, G.M.: On the analysis of laminar flow of viscous fluid through a porous channel with suction/injection at slowly expanding or contracting walls. J. Comput. Appl. Mech. 48(2), 319–330 (2017)

    Google Scholar 

  5. Ashwini, B.; Katagi, N.N.; Rai, A.S.: Analysis of laminar flow through a porous channel with velocity slip. Malays J. Math. Sci. 11(3), 423–439 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bhatti, K.; Bano, Z.; Siddiqui, A.M.: Unsteady Stokes flow through porous channel with periodic suction and injection with slip conditions. Eur. J. Pure Appl. Math. 11(4), 937–945 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farooq, J.; Mushtaq, M.; Munir, S.; Ramzan, M.; Chung, J.D.; Farooq, U.: Slip flow through a non-uniform channel under the influence of transverse magnetic field. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  8. Raza, J.; Rohni, A.M.; Omar, Z.: A note on some solutions of copper-water (cu-water) nanofluids in a channel with slowly expanding or contracting walls with heat transfer. Math. Comput. Appl. 21(2), 2016 (2016)

    MathSciNet  Google Scholar 

  9. Akinshilo, A.T.: Flow and heat transfer of nanofluid with injection through an expanding or contracting porous channel under magnetic force field. Eng. Sci. Technol. Int. J. 21(3), 486–494 (2018)

    Google Scholar 

  10. Ali, A.; Ali, Y.; Kumam, P.; Babar, K.; Ahmed, A.; Shah, Z.: Flow of a nanofluid and heat transfer in channel with contracting/expanding walls. IEEE Access 7, 102427–102436 (2019)

    Article  Google Scholar 

  11. Potter, M.C.; Graber, E.: Stability of plane Poiseuille flow with heat transfer. Phys. Fluids 15(3), 387–391 (1972)

    Article  MATH  Google Scholar 

  12. Schäfer, P.; Herwig, H.: Stability of plane Poiseuille flow with temperature dependent viscosity. Int. J. Heat Mass Transf. 36(9), 2441–2448 (1993)

    Article  MATH  Google Scholar 

  13. Pinarbasi, A.; Liakopoulos, A.: The role of variable viscosity in the stability of channel flow. Int. Commun. Heat Mass Transf. 22(6), 837–847 (1995)

    Article  MATH  Google Scholar 

  14. Ferro, S.; Gnavi, G.: Effects of temperature-dependent viscosity in channels with porous walls. Phys. Fluids 14(2), 839–849 (2002)

    Article  MATH  Google Scholar 

  15. Sinha, A.; Shit, G.C.; Ranjit, N.K.: Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: effects of variable viscosity, velocity-slip and temperature jump. Alexandria Eng. J. 54(3), 691–704 (2015)

    Article  Google Scholar 

  16. Animasaun, I.L.: Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J. Niger. Math. Soc. 34(1), 11–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jha, B.K.; Aina, B.; Rilwanu, Z.: Steady fully developed natural convection flow in a vertical annular microchannel having temperature dependent viscosity: an exact solution. Alexandria Eng. J. 55(2), 951–958 (2016)

    Article  Google Scholar 

  18. Jha, B.; Oni, M.: Mixed convection flow in a vertical channel with temperature dependent viscosity and flow reversal: an exact solution. Int. J. Heat Technol. 36(2), 607–613 (2018)

    Article  Google Scholar 

  19. Srinivas, S.; Kumar, C.K.; Reddy, A.S.: Pulsating flow of Casson fluid in a porous channel with thermal radiation, chemical reaction and applied magnetic field. Nonlinear Anal. Model. Control 23(2), 213–233 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumam, P.; Shah, Z.; Dawar, A.; Rasheed, H.U.; Islam, S.: Entropy generation in MHD radiative flow of CNTs Casson nanofluid in rotating channels with heat source/sink. Math. Probl. Eng. 2019, 9158093 (2019). https://doi.org/10.1155/2019/9158093

    Article  MathSciNet  MATH  Google Scholar 

  21. Manjunatha, G.; Rajashekhar, C.; Vaidya, H.; Prasad, K.V.: Simultaneous effects of heat transfer and variable viscosity on peristaltic transport of Casson Fluid flow in an inclined porous tube. Int. J. Appl. Mech. Eng. 24(2), 309–328 (2019)

    Article  Google Scholar 

  22. Alzahrani, A.K.; Sivasankaran, S.; Bhuvaneswari, M.: Numerical simulation on convection and thermal radiation of Casson fluid in an enclosure with entropy generation. Entropy 22(2), 2020 (2020)

    Article  MathSciNet  Google Scholar 

  23. Si, X.H.; Zheng, L.C.; Zhang, X.X.; Chao, Y.: Homotopy analysis solutions for the asymmetric laminar flow in a porous channel with expanding or contracting walls. Acta Mech. Sin. Xuebao 27(2), 208–214 (2011)

    Article  MATH  Google Scholar 

  24. Ochoa, M. V.: Analysis of Drilling Fluid Rheology and Tool Joint Effect To Reduce Errors in Hydraulics Calculations Analysis of Drilling Fluid Rheology and Tool Joint Effect To Reduce Errors in Hydraulics (2006)

  25. Animasaun, I.L.; Adebile, E.A.; Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35(1), 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  27. Prasad, K.V.; Vajravelu, K.; Datti, P.S.: The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet. Int. J. Therm. Sci. 49(3), 603–610 (2010)

    Article  Google Scholar 

  28. Dogonchi, A.S.; Alizadeh, M.; Ganji, D.D.: Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect. Adv. Powder Technol. 28(7), 1815–1825 (2017)

    Article  Google Scholar 

  29. Srinivas, S.; Shukla, A.K.; Ramamohan, T.R.; Reddy, A.S.: Influence of thermal radiation on unsteady flow over an expanding or contracting cylinder with thermal-diffusion and diffusion-thermo effects. J. Aerosp. Eng. 28(5), 2015 (2015)

    Article  Google Scholar 

  30. Mabood, F.; Abdel-Rahman, R.G.; Lorenzini, G.: Effect of melting heat transfer and thermal radiation on Casson fluid flow in porous medium over moving surface with magnetohydrodynamics. J. Eng. Thermophys. 25(4), 536–547 (2016)

    Article  Google Scholar 

  31. Uchida, S.; Aoki, H.: Unsteady flows in a semi-infinite contracting or expanding pipe. J. Fluid Mech. 82(2), 371–387 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fan, T.; Xu, H.; Pop, I.: Mixed convection heat transfer in horizontal channel filled with nanofluids. Appl. Math. Mech. (English Ed.) 34(3), 339–350 (2013)

    Article  MathSciNet  Google Scholar 

  33. Liao, S.: Beyond Perturbation. Chapman and Hall/CRC, Boca Raton (2003)

    Book  Google Scholar 

  34. Liao, S.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499–513 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Subramanyam Reddy, A.; Srinivas, S.; Ramamohan, T.R.: Analysis of heat and chemical reaction on an asymmetric laminar flow between slowly expanding or contracting walls. Heat Transf. Asian Res. 42(5), 422–443 (2013)

    Article  Google Scholar 

  36. Xinhui, S.; Liancun, Z.; Xinxin, Z.; Xinyi, S.; Min, L.: Asymmetric viscoelastic flow through a porous channel with expanding or contracting walls: a model for transport of biological fluids through vessels. Computer Methods in Biomechanics and Biomedical Engineering 17(6), 623–631 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to anonymous reviewers for useful remarks on manuscript improvement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Abbas or J. Hasnain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiq, S., Abbas, Z., Sheikh, M. et al. Effects of Variable Viscosity on Asymmetric Flow of Non-Newtonian Fluid Driven Through an Expanding/Contracting Channel Containing Porous Walls. Arab J Sci Eng 45, 9471–9480 (2020). https://doi.org/10.1007/s13369-020-04798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04798-8

Keywords

Navigation