Skip to main content
Log in

Mixed convection heat transfer in horizontal channel filled with nanofluids

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanoparticle concentration distributions are obtained. The effects of the Brownian motion parameter N b, the thermophoresis parameter N t, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B. Buoyancy-Induced Flows and Transport, Hemisphere, New York (1988)

    MATH  Google Scholar 

  2. Martynenko, O. G. and Khramtsov, P. P. Free-Convective Heat Transfer, Springer, Berlin (2005)

    Google Scholar 

  3. Choi, U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED, 231, 99–103 (1995)

    Google Scholar 

  4. Yu, M. and Lin, J. Nanoparticle-laden flows via moment method: a review. Int. J. Multiphase Flow, 36, 144–151 (2010)

    Article  Google Scholar 

  5. Das, S. K., Choi, U. S., and Yu, W. Nanofluids Sciences and Technology, Wiley, New Jersey (2008)

    Google Scholar 

  6. Buongiorno, J. Convective transport in nanofluids. ASME J. Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  7. Daungthongsuk, W. and Wongwises, S. A critical review of convective heat transfer nanofluids. Renew. Sust. Energ. Rev., 11, 797–817 (2007)

    Article  Google Scholar 

  8. Ding, Y., Chen, H., Wang, L., Yang, C. Y., Hel, Y., Yang, W., Lee, W. P., Zhang, L., and Huo, R. Heat transfer intensification using nanofluids. Kona, 25, 23–38 (2007)

    Google Scholar 

  9. Wang, X. Q. and Mujumdar, A. S. A review on nanofluids-part I: theoretical and numerical investigations. Brazilian J. Chem. Engng., 25, 613–630 (2008)

    Google Scholar 

  10. Wang, X. Q. and Mujumdar, A. S. A review on nanofluids-part II: experiments and applications. Brazilian J. Chem. Engng., 25, 631–648 (2008)

    Article  Google Scholar 

  11. Kakaç, S. and Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer, 52, 3187–3196 (2009)

    Article  MATH  Google Scholar 

  12. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett., 78, 718–720 (2001)

    Article  Google Scholar 

  13. Xie, H. Q., Lee, H., Youn, W., and Choi, M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys., 94, 4967–4971 (2003)

    Article  Google Scholar 

  14. Oztop, H. F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow, 29, 1326–1336 (2008)

    Article  Google Scholar 

  15. Xuan, Y. M. and Li, Q. Heat transfer enhancement of nanofluid. Int. J. Heat Fluid Flow, 21, 58–64 (2000)

    Article  Google Scholar 

  16. Cimpean, D. S. and Pop, I. Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int. J. Heat Mass Transfer, 55, 907–914 (2012)

    Article  MATH  Google Scholar 

  17. Lin, J., Lin, P., and Chen, H. Research on the transport and deposition of nanoparticles in a rotating curved pipe. Phys. Fluids, 21, 122001 (2009)

    Article  Google Scholar 

  18. Lin, P. F. and Lin, J. Z. Prediction of nanoparticle transport and deposition in bends. Appl. Math. Mech. -Engl. Ed., 30(8), 957–968 (2009) DOI 10.1007/s10483-009-0802-z

    Article  MATH  Google Scholar 

  19. Lavine, A. S. Analysis of fully developed opposingmixed convection between inclined parallel plates. Wärme-und Stoffübertragung, 23, 249–257 (1988)

    Article  Google Scholar 

  20. Muthtamilselvan, M., Kandaswamy, P., and Lee, J. Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commun. Nonlinear Sci. Numer. Simulat., 15, 1501–1510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, Y. C. and Chung, J. N. The linear stability of mixed convection in a vertical channel flow. J. Fluid Mech., 325, 29–51 (1996)

    Article  MATH  Google Scholar 

  22. Liao, S. J. Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  23. Cheng, J., Cang, J., and Liao, S. J. On the interaction of deep water waves and exponential shear currents. Z. Angew. Math. Phys., 60, 450–478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abbasbandy, S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation. Phys. Lett. A, 361, 478–483 (2007)

    Article  MATH  Google Scholar 

  25. Hayat, T. and Sajid, M. Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. Int. J. Eng. Sci., 45, 393–401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. You, X. C. and Xu, H. Analytical approximations for the periodic motion of the Duffing system with delayed feedback. Numer. Algor., 56, 561–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, S. P. An exact and explicit solution for the valuation of American put options. Quant. Financ., 6, 229–242 (2006)

    Article  MATH  Google Scholar 

  28. Wang, Z. C., Tang, D. W., and Hua, X. G. Similarity solutions for flows and heat transfer in microchannels between two parallel plates. Int. J. Heat Mass Transfer, 54, 2349–2354 (2011)

    Article  MATH  Google Scholar 

  29. Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer, 52, 5792–5795 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Xu  (徐 航).

Additional information

Project supported by the National Natural Science Foundation of China (No. 10972136) and the Doctoral Fund for New Teachers of Higher Eduation of China (No. 20090073120014)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, T., Xu, H. & Pop, I. Mixed convection heat transfer in horizontal channel filled with nanofluids. Appl. Math. Mech.-Engl. Ed. 34, 339–350 (2013). https://doi.org/10.1007/s10483-013-1674-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1674-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation