Skip to main content
Log in

Springback Behavior of Fiber Metal Laminates with Carbon Fiber-Reinforced Core in V-Bending Process

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fiber metal laminates (FMLs) are a kind of hybrid composite material that consist of metal sheets and fiber-reinforced composite layers. The use of FMLs has been particularly increasing in the production of aircraft bodies. However, the springback behavior that occurs during the formation of FML parts has a negative impact on the form of the final product. In the present study, FMLs were manufactured by combining aluminum 5754-H22 sheets and carbon fiber-reinforced plastic sheets by using adhesive. A set of experiments were performed to determine the effect of bending angle, face sheet thickness and core thickness on the springback behavior of FMLs. The results showed that the amount of springback in the FML specimen increased as the bending angle increased. It was found that when the thickness of the face sheet increased, the amount of springback in FML specimens was higher in all bending angles. In addition, the amount of springback in FML specimens decreased as core thickness increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xue, J.; Wang, W.X.; Takao, Y.; Matsubara, T.: Reduction of thermal residual stress in carbon fiber aluminum laminates using a thermal expansion clamp. Compos. A Appl. Sci. Manuf. 42, 986–992 (2011)

    Article  Google Scholar 

  2. Keipour, S.; Gerdooei, M.: Springback behavior of fiber metal laminates in hat-shaped draw bending process: experimental and numerical evaluation. Int. J. Adv. Manuf. Technol. 100, 1755–1765 (2019)

    Article  Google Scholar 

  3. Khalili, S.M.R.; Mittal, R.K.; Kalibar, S.G.: A study of the mechanical properties of steel/aluminium/GRP laminates. Mater. Sci. Eng. A 412, 137–140 (2005)

    Article  Google Scholar 

  4. Chang, P.Y.; Yeh, P.C.; Yang, J.M.: Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates. Mater. Sci. Eng. 496, 273–280 (2008)

    Article  Google Scholar 

  5. Ostapiuk, M.; Surowska, B.; Bieniaś, J.: Interface analysis of fiber metal laminates. Compos. Interfaces 21, 309–318 (2014)

    Article  Google Scholar 

  6. Alderliesten, R.C.; Homan, J.J.: Fatigue and damage tolerance issues of Glare in aircraft structures. Int. J. Fatigue 28, 1116–1123 (2006)

    Article  Google Scholar 

  7. Borgonje, B.; Ypma, M.S.: Long term behaviour of glare. Appl. Compos. Mater. 10, 243–255 (2003)

    Article  Google Scholar 

  8. Mosse, L.; Compston, P.; Cantwell, W.J.; Cardew-Hall, M.; Kalyanasundaram, S.: Stamp forming of polypropylene based fiber–metal laminates: the effect of process variables on formability. J. Mater. Process. Technol. 172, 163–168 (2006)

    Article  Google Scholar 

  9. Ján, S.; Miroslav, J.: Springback prediction in sheet metal forming processes. J. Technol. Plast. 37, 93–103 (2012)

    Google Scholar 

  10. Aghchai, A.J.; Abolghasemi, A.; Moradkhani, B.; Tajik, M.: Experimental, theoretical and numerical investigation of springback behavior of Al/composite/Al sandwich sheet. J. Sandw. Struct. Mater. 19, 659–678 (2017)

    Article  Google Scholar 

  11. Yanagimoto, J.; Ikeuchi, K.: Sheet forming process of carbon fiber reinforced plastics for lightweight parts. CIRP Ann. Manuf. Technol. 61, 247–250 (2012)

    Article  Google Scholar 

  12. Li, H.; Chen, J.; Yang, J.: Experimental and numerical investigation of laminated steel sheet in V-bending process considering nonlinear visco-elasticity of polymer layer. J. Mater. Process. Technol. 212, 36–45 (2012)

    Article  Google Scholar 

  13. Liu, J.; Xue, W.: Unconstrained bending and springback behaviors of aluminum-polymer sandwich sheets. Int. J. Adv. Manuf. Technol. 91, 1517–1529 (2017)

    Article  Google Scholar 

  14. Kim, S.Y.; Choi, W.J.; Park, S.Y.: Spring-back characteristics of fiber metal laminate (GLARE) in brake forming process. Int. J. Adv. Manuf. Technol. 32, 445–451 (2007)

    Article  Google Scholar 

  15. Liu, K.; Ye, J.; Zhang, B.; Wang, Y.; Jia, L.: Experimental and finite element studies on hot sizing process for L-shaped composite beams. Compos. A Appl. Sci. Manuf. 87, 161–169 (2016)

    Article  Google Scholar 

  16. Parsa, M.H.; Mohammadi, S.V.; Aghchai, A.J.: Al3105/polypropylene/Al3105 laminates springback in V-die bending. Int. J. Adv. Manuf. Technol. 75, 849–860 (2014)

    Article  Google Scholar 

  17. Hahn, M.; Khalifa, N.B.; Weddeling, C.; Shabaninejad, A.: Springback behavior of carbon-fiber-reinforced plastic laminates with metal cover layers in V-die bending. J. Manuf. Sci. Eng. 138, 12 (2016)

    Article  Google Scholar 

  18. Choi, S.W.; Lee, M.S.; Kang, C.G.: Effect of process parameters and laminating methods on spring-back in V-bending of CFRP/CR340 hybrid composites. Int. J. Precis. Eng. Manuf. 17, 395–400 (2016)

    Article  Google Scholar 

  19. Uriya, Y.; Ikeuch, K.; Yanagimoto, J.: Cold and warm V-bending test for carbon-fiber-reinforced plastic sheet. Procedia Eng. 81, 1633–1638 (2014)

    Article  Google Scholar 

  20. Parsa, M.H.; Ettehad, M.: Experimental and finite element study on the spring back of double curved aluminum/polypropylene/aluminum sandwich sheet. Mater. Des. 31, 4174–4183 (2010)

    Article  Google Scholar 

  21. Taskin, N.U.; Sahin, A.: Effect of aging time at high temperature on the shear strength of adhesively bonded aluminum composite foam joints. J. Adhes. 95, 308–324 (2019)

    Article  Google Scholar 

  22. Budhe, S.; Ghumatkar, A.; Birajdar, N.; Banea, M.D.: Effect of surface roughness using different adherend materials on the adhesive bond strength. Appl. Adhes. Sci. 3, 20 (2015)

    Article  Google Scholar 

  23. Rushforth, M.W.; Bowen, P.; McAlpine, E.; Zhou, X.; Thompson, G.E.: The effect of surface pretreatment and moisture on the fatigue performance of adhesively-bonded aluminum. J. Mater. Process. Technol. 153, 359–365 (2004)

    Article  Google Scholar 

  24. Devcon Plastic Welder Technical Data Sheet. http://www.itwconsumer.com/ (2020). Accessed 19 Feb 2020

  25. Tekaslan, O.; Gerger, N.; Seker, U.: Determination of spring-back of stainless steel sheet metal in “V” bending dies. Mater. Des. 29, 1043–1050 (2008)

    Article  Google Scholar 

  26. Uriya, Y.; Yanagimoto, J.: Suitable structure of thermosetting CFRP sheet for cold/warm forming. Int. J. Mater. Form. 9, 243–252 (2016)

    Article  Google Scholar 

  27. Mohammadi, S.V.; Parsa, M.H.; Aghchai, A.J.: Effect of the thickness distribution and setting condition on springback in multi-layer sheet bending. Int. J. Eng. Sci. Technol. 3, 225–235 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of Trakya University. Project Number: 2017/185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedat Taskin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isiktas, A., Taskin, V. Springback Behavior of Fiber Metal Laminates with Carbon Fiber-Reinforced Core in V-Bending Process. Arab J Sci Eng 45, 9357–9366 (2020). https://doi.org/10.1007/s13369-020-04796-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04796-w

Keywords

Navigation