Skip to main content
Log in

Uplift Behavior of Belled Piles Subjected to Static Loading

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The uplift behavior of foundation is of great importance for the construction of foundations of ports, transmission towers and other structures that require to resist uplift loading. This research presents the results of several uplift static loading tests of prototypical belled piles. The load–displacement curve of belled piles is divided into three stages: initial linear segment, middle curve segment, and ending linear segment. The characteristic uplift capacities for the three stages are given by a graphics method. A bi-linear equation is given for predicting characteristic loading capacities of piles based on the ratio of bell to shaft diameters (bb/bs) and the embedment depth (L). Using the calibrated micro-parameters by the load–displacement curves, PFC2D is used to investigate the development of microcracks and formation of soil slip surface in the uplift test. The predicted uplift capacities by simulation can match the experimental value and estimated value by the suggested linear equation. The numerical result shows that the microcracks propagate, connect, and coalesce rapidly once the load–displacement curve reaches the middle curve segment. The final soil slip surface from numerical simulation varies with the geometric dimension of belled piles. The effect of bell to shaft diameters ratio (bb/bs) and embedment depth (L) on the uplift capacity is examined using numerical uplift tests. The result shows that uplift capacity of belled piles can be improved by increasing bell to shaft diameters ratio (bb/bs) and embedment depth (L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Some of the above figures are provided by Cui et al. [47]

Fig. 3
Fig. 4

After Cui et al. [47]

Fig. 5
Fig. 6

After Kulhawy and Hirany [52]

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Dickin, E.; Leung, C.: The influence of foundation geometry on the uplift behaviour of piles with enlarged bases. Can. Geotech. J. 29, 498–505 (1992). https://doi.org/10.1139/t92-054

    Article  Google Scholar 

  2. Ilamparuthi, K.; Dickin, E.: The influence of soil reinforcement on the uplift behaviour of belled piles embedded in sand. Geotext. Geomembr. 19, 1–22 (2001). https://doi.org/10.1016/S0266-1144(00)00010-8

    Article  Google Scholar 

  3. Lutenegger, A.J.: Uplift tests on shallow cast-in-place enlarged base pedestal foundations in clay. In: IFCEE, pp. 827–838 (2015). https://doi.org/10.1061/9780784479087.075

  4. Honda, T.; Hirai, Y.; Sato, E.: Uplift capacity of belled and multi-belled piles in dense sand. Soils Found. 51, 483–496 (2011). https://doi.org/10.3208/sandf.51.483

    Article  Google Scholar 

  5. Xiao, H.B.; Zhang, C.S.; Wang, Y.H.; Fan, Z.H.: Pile-soil interaction in expansive soil foundation: analytical solution and numerical simulation. Int. J. Geomech. 11, 59–66 (2011). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000046

    Article  Google Scholar 

  6. Ashour, M.; Ardalan, H.: Analysis of pile stabilized slopes based on soil–pile interaction. Comput. Geotech. 39, 85–97 (2012). https://doi.org/10.1016/j.compgeo.2011.09.001

    Article  Google Scholar 

  7. Khodair, Y.; Abdel-Mohti, A.: Numerical analysis of pile–soil interaction under axial and lateral loads. Int. J. Concrete Struct. Mater. 8, 239–249 (2014). https://doi.org/10.1007/s40069-014-0075-2

    Article  Google Scholar 

  8. Kim, Y.; Jeong, S.: Analysis of soil resistance on laterally loaded piles based on 3D soil–pile interaction. Comput. Geotech. 38, 248–257 (2011). https://doi.org/10.1016/j.compgeo.2010.12.001

    Article  Google Scholar 

  9. Merifield, R.S.; Smith, C.C.: The ultimate uplift capacity of multi-plate strip anchors in undrained clay. Comput. Geotech. 37, 504–514 (2010). https://doi.org/10.1016/j.compgeo.2010.02.004

    Article  Google Scholar 

  10. The, C.; Wong, K.; Goh, A.; Jaritngam, S.: Prediction of pile capacity using neural networks. J. Comput. Civ. Eng. 11, 129–138 (1997). https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129)

    Article  Google Scholar 

  11. Hyeon Chai, S.; Ghaemmaghami, A.R.; Kwon, O.-S.: Numerical modelling method for inelastic and frequency-dependent behavior of shallow foundations. Soil Dyn. Earthq. Eng. 92, 377–387 (2017). https://doi.org/10.1016/j.soildyn.2016.10.030

    Article  Google Scholar 

  12. Qian, Z.Z.; Lu, X.L.; Yang, W.Z.; Cui, Q.: Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment. Geomech. Eng. 11, 141–160 (2016). https://doi.org/10.12989/gae.2016.11.1.141

    Article  Google Scholar 

  13. Gavin, K.; Doherty, P.; Tolooiyan, A.: Field investigation of the axial resistance of helical piles in dense sand. Can. Geotech. J. 51, 1343–1354 (2014). https://doi.org/10.1139/cgj-2012-0463

    Article  Google Scholar 

  14. Zhang, Q.Q.; Li, S.C.; Li, L.P.: Field and theoretical analysis on the response of destructive pile subjected to tension load. Mar. Georesour. Geotech. 33, 12–22 (2015). https://doi.org/10.1080/1064119X.2013.764558

    Article  Google Scholar 

  15. Xu, H.Y.; Chen, L.Z.; Deng, J.L.: Uplift tests of jet mixing anchor pile. Soils Found. 54, 168–175 (2014). https://doi.org/10.1016/j.sandf.2014.02.008

    Article  Google Scholar 

  16. Shin, E.; Das, B.; Puri, V.; Yen, S.; Cook, E.: Ultimate uplift capacity of model rigid metal piles in clay. Geotech. Geol. Eng. 11, 203–215 (1993). https://doi.org/10.1007/BF00531251

    Article  Google Scholar 

  17. Van Nguyen, Q.; Fatahi, B.; Hokmabadi, A.S.: Influence of size and load-bearing mechanism of piles on seismic performance of buildings considering soil–pile–structure interaction. Int. J. Geomech. 17, 04017007 (2017). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000869

    Article  Google Scholar 

  18. Das, B.M.; Jin-Jaun, Y.: Uplift capacity of model group anchors in sand. In: Foundations for Transmission Line Towers, pp. 57–71. ASCE (1987)

  19. O’Kelly, B.C.; Brinkgreve, R.B.J.; Sivakumar, V.: Pullout resistance of granular anchors in clay for undrained condition. Soils Found. 54, 1145–1458 (2014). https://doi.org/10.1016/j.sandf.2014.11.009

    Article  Google Scholar 

  20. Sivakumar, V.; O’Kelly, B.C.; Madhav, M.R.; Moorhead, C.; Rankin, B.: Granular anchors under vertical loading—axial pull. Can. Geotech. J. 50, 123–132 (2013). https://doi.org/10.1139/cgj-2012-0203

    Article  Google Scholar 

  21. Kranthikumar, A.; Sawant, V.; Kumar, P.; Shukla, S.K.: Numerical and experimental investigations of granular anchor piles in loose sandy soil subjected to uplift loading. Int. J. Geomech. 17, 04016059 (2016). https://doi.org/10.1007/s40891-016-0056-4

    Article  Google Scholar 

  22. Frydman, S.; Shaham, I.: Pullout capacity of slab anchors in sand. Can. Geotech. J. 26, 385–400 (1989). https://doi.org/10.1139/t89-053

    Article  Google Scholar 

  23. Murray, E.; Geddes, J.: Resistance of passive inclined anchors in cohesionless medium. Geotechnique 39, 417–431 (1989). https://doi.org/10.1016/0148-9062(90)95165-W

    Article  Google Scholar 

  24. Qian, Z.Z.; Lu, X.L.; Tong, R.M.: Uplift load–movement response of bell pier foundations in Gobi gravel. Proc. Inst. Civ. Eng-Geotech. 167, 380–389 (2014). https://doi.org/10.1680/geng.12.00072

    Article  Google Scholar 

  25. Livneh, B.; El Naggar, M.H.: Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading. Can. Geotech. J. 45, 1142–1155 (2008). https://doi.org/10.1139/T08-044

    Article  Google Scholar 

  26. Qian, Z.Z.; Lu, X.L.; Han, X.; Tong, R.M.: Interpretation of uplift load tests on belled piers in Gobi gravel. Can. Geotech. J. 52, 992–998 (2015). https://doi.org/10.1139/cgj-2014-0075

    Article  Google Scholar 

  27. Ellis, E.; Springman, S.: Modelling of soil–structure interaction for a piled bridge abutment in plane strain FEM analyses. Comput. Geotech. 28, 79–98 (2001). https://doi.org/10.1016/S0266-352X(00)00025-2

    Article  Google Scholar 

  28. Hao, D.X.; Zhang, J.Z.; Chen, R.: The influence of geometry of pedestal piles in silt on uplift behavior. In: Applied Mechanics and Materials, pp. 426–429. Trans Tech Publications (2014). https://doi.org/10.4028/www.scientific.net/AMM.680.426

  29. Deng, L.J.; Kutter, B.L.: Characterization of rocking shallow foundations using centrifuge model tests. Earthq. Eng. Struct. 41, 1043–1060 (2012). https://doi.org/10.1002/eqe.1181

    Article  Google Scholar 

  30. Madhusudan Reddy, K.; Ayothiraman, R.: Experimental studies on behavior of single pile under combined uplift and lateral loading. J. Geotech. Geoenviron. 141, 04015030 (2015). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001314

    Article  Google Scholar 

  31. Hazzar, L.; Hussien, M.N.; Karray, M.: Influence of vertical loads on lateral response of pile foundations in sands and clays. J. Rock Mech. Geotech. Eng. 9, 291–304 (2017). https://doi.org/10.1016/j.jrmge.2016.09.002

    Article  Google Scholar 

  32. Zhang, L.; Ahmari, S.: Nonlinear analysis of laterally loaded rigid piles in cohesive soil. Int. J. Numer. Anal. Methods 37, 201–220 (2013). https://doi.org/10.1002/nag.1094

    Article  Google Scholar 

  33. Liu, F.; Jiang, M.J.; Zhu, F.Y.: Discrete element analysis of uplift and lateral capacity of a single pile in methane hydrate bearing sediments. Comput. Geotech. 62, 61–76 (2014). https://doi.org/10.1016/j.compgeo.2014.07.001

    Article  Google Scholar 

  34. Chen, J.-J.; Zhang, L.: Effect of spatial correlation of cone tip resistance on the bearing capacity of piles. J. Geotech. Geoenviron. 139, 494–500 (2012). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000775

    Article  Google Scholar 

  35. Tho, K.K.; Chen, Z.; Leung, C.F.; Chow, Y.K.: Pullout behaviour of plate anchor in clay with linearly increasing strength. Can. Geotech. J. 51, 92–102 (2014). https://doi.org/10.1139/cgj-2013-0140

    Article  Google Scholar 

  36. Cheng, C.Y.; Dasari, G.R.; Chow, Y.K.; Leung, C.F.: Finite element analysis of tunnel–soil–pile interaction using displacement controlled model. Tunn. Undergr. Sp. Technpl. 22, 450–466 (2007). https://doi.org/10.1016/j.tust.2006.08.002

    Article  Google Scholar 

  37. Poulos, H.G.: An approximate numerical analysis of pile–raft interaction. Int. J. Numer. Anal. Methods 18, 73–92 (1994). https://doi.org/10.1002/nag.1610180202

    Article  Google Scholar 

  38. Tsuha, CdHC; Aoki, N.: Relationship between installation torque and uplift capacity of deep helical piles in sand. Can. Geotech. J. 47, 635–647 (2010). https://doi.org/10.1139/T09-128

    Article  Google Scholar 

  39. Merifield, R.S.; Sloan, S.W.: The ultimate pullout capacity of anchors in frictional soils. Can. Geotech. J. 43, 852–868 (2006). https://doi.org/10.1139/t06-052

    Article  Google Scholar 

  40. Kiefa, M.A.: General regression neural networks for driven piles in cohesionless soils. J. Geotech. Geoenviron. 124, 1177–1185 (1998). https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1177)

    Article  Google Scholar 

  41. Samui, P.: Determination of ultimate capacity of driven piles in cohesionless soil: a multivariate adaptive regression spline approach. Int. J. Numer. Anal. Methods 36, 1434–1439 (2012). https://doi.org/10.1002/nag.1076

    Article  Google Scholar 

  42. Chen, J.-J.; Wang, J.-H.; Liang, R.; Fan, W.; Wang, W.-D.: Behavior of uplift pile foundation during large-scale deep excavation. In: GeoFlorida 2010: Advances in Analysis, Modeling & Design, pp. 1727–1736 (2010). https://doi.org/10.1061/41095(365)175

  43. Dickin, E.; Leung, C.: Performance of piles with enlarged bases subject to uplift forces. Can. Geotech. J. 27, 546–556 (1990). https://doi.org/10.1139/t91-092

    Article  Google Scholar 

  44. Lee, C.; Bolton, M.; Al-Tabbaa, A.: Numerical modelling of group effects on the distribution of dragloads in pile foundations. Geotechnique 52, 325–335 (2002). https://doi.org/10.1680/geot.2002.52.5.325

    Article  Google Scholar 

  45. McCabe, B.A.: Experimental Investigations of Driven Pile Group Behaviour in Belfast Soft Clay. Trinity College Dublin, Dublin 2 (2002)

    Google Scholar 

  46. McCabe, B.A.; Sheil, B.B.: Pile group settlement estimation: suitability of nonlinear interaction factors. Int. J. Geomech. 15, 04014056 (2014). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000395

    Article  Google Scholar 

  47. Cui, Q.; Zhang, Z.H.; Tong, R.M.; Lv, Z.C.: The effects of the geometric parameters of a circular shallow foundation on its uplift bearing capacity in loess soil. Acta Geotech. Slov. 15, 74–80 (2018). https://doi.org/10.18690/actageotechslov.15.2.74-80.2018

    Article  Google Scholar 

  48. ZhongNan Engineering Corporation Limited: Technical Code for Design of Foundation of Overhead Transmission Line DL/T5219-2014. China Electric Power Press, Beijing (2015). (in Chinese)

    Google Scholar 

  49. China Ministry of Housing and Construction: Code for Design of Building Foundations GB50007-2011. China Architecture and Building Press, Beijing (2010). (in Chinese)

    Google Scholar 

  50. Trautmann, C.H.; O’Rourfce, T.D.; Kulhawy, F.H.: Uplift force–displacement response of buried pipe. J. Geotech. Eng. 111, 1061–1076 (1985). https://doi.org/10.1061/(ASCE)0733-9410(1985)111:9(1061)

    Article  Google Scholar 

  51. Chin, F.K.: Estimation of the ultimate load of piles from tests not carried to failure. In: Southeast Asian Society of Soil Engineering (1970)

  52. Kulhawy, F.H.; Hirany, A.: Interpretation of load tests on drilled shafts—part 2: axial uplift. In: Foundation Engineering: Current Principles and Practices, pp. 1150–1159. ASCE (1989)

  53. Kulhawy, F.H.: On the axial behavior of drilled foundations. In: GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems, pp. 34–51 (2004). https://doi.org/10.1061/40713(2004)3

  54. Cui, Q.; Meng, X.Q.; Yang, S.C.: Experimental investigation of influence of embedment depth and expanding ratio upon ultimate uplift resistance of hole digging foundation in rock. Rock Soil Mech. (2016). https://doi.org/10.1061/(ASCE)0733-9410(1985)111:9(1061). (Chinese)

    Article  Google Scholar 

  55. Murray, E.; Geddes, J.: Uplift behaviour of plates in sand. J. Geotech. Eng. ASCE 113, 202–215 (1987)

    Article  Google Scholar 

  56. Itasca Consulting Group: PFC 5.0 Manual, vol. 325. Itasca Consulting Group Inc., Minnesota (2016)

    Google Scholar 

  57. Potyondy, D.O.; Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. 41, 1329–1364 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  58. Liu, G.; Rong, G.; Peng, J.; Zhou, C.B.: Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model. Eng. Geol. 193, 256–266 (2015). https://doi.org/10.1016/j.enggeo.2015.04.019

    Article  Google Scholar 

  59. Rong, G.; Liu, G.; Hou, D.; Zhou, C.B.: Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model. Sci. World J. (2013). https://doi.org/10.1155/2013/589215

    Article  Google Scholar 

  60. Liu, G.; Cai, M.; Huang, M.: Mechanical properties of brittle rock governed by micro-geometric heterogeneity. Comput. Geotech. 104, 358–372 (2018). https://doi.org/10.1016/j.compgeo.2017.11.013

    Article  Google Scholar 

  61. Park, J.-W.; Song, J.-J.: Numerical simulation of a direct shear test on a rock joint using a bonded-particle model. Int. J. Rock Mech. Min. 46, 1315–1328 (2009). https://doi.org/10.1016/j.ijrmms.2009.03.007

    Article  Google Scholar 

  62. Liu, G.; Peng, J.; Zhang, Z.; Wang, Z.; Yang, Y.: Numerical investigation of fluid-driven crack propagation and coalescence in granite specimen with two pre-existing flaws. J. Nat. Gas Sci. Eng. 75, 103132 (2020). https://doi.org/10.1016/j.jngse.2019.103132

    Article  Google Scholar 

  63. Liu, G.; Cai, M.: Modeling time-dependent deformation behavior of brittle rock using grain-based stress corrosion method. Comput. Geotech. 118, 103323 (2020). https://doi.org/10.1016/j.compgeo.2019.103323

    Article  Google Scholar 

  64. ASTM: Standard test method for individual piles under static axial tensile load. ASTM standard D3689-90 (reapproved 1995) In: Annual Book of ASTM Standards, vol. 4, pp. 366–375. ASTM International, West Conshohocken (1997)

Download references

Acknowledgements

The first author is supported by Anhui Natural Science Youth Fund (No. 1908085QE216), Open Fund of the Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Ministry of Education, Wuhan University (No. RMHSE1604), Chinese Universities Scientific Fund (Nos. PA2019GDPK0089, JZ2016HGBZ1021) and Innovation and entrepreneurship funds for returnees of Hefei. The third author acknowledges the support from the research project: Study on some environmental factors of the transmission line (No. GCB17201400162). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhang, Z., Cui, Q. et al. Uplift Behavior of Belled Piles Subjected to Static Loading. Arab J Sci Eng 46, 4369–4385 (2021). https://doi.org/10.1007/s13369-020-04779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04779-x

Keywords

Navigation