Skip to main content

Advertisement

Log in

A Novel Hybrid Fuzzy PD-TID Controller for Load Frequency Control of a Standalone Microgrid

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Uncertainties related to the power output from the renewable energy sources and low inertia of a standalone microgrid (SMG) demand a robust control strategy for continuous frequency control of the SMG. Consequently, this paper proposes a novel hybrid fuzzy proportional derivative–tilt integral derivative (FPD-TID) controller for the load frequency control (LFC) analysis of a SMG. Inspiration for the proposed controller comes from combining the advantages of both the FPD and the TID controllers. Gains of the proposed controller are optimized using a robust chaotic crow search algorithm (CCSA). In order to validate the proposed control scheme, comparative frequency deviation responses of the SMG are presented considering multiple disturbances. Also, the proposed controller is put to test for its sensitivity and robustness subject to a ± 30% variation in the SMG parameters and disconnection of various SMG subsystems, respectively. Since operational stability of the SMG is highly desirable under such circumstances, the proposed control scheme aims to achieve a trade-off between its performance and the operational stability of the SMG. The operational stability of the SMG is established through eigenvalue and root locus analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

f :

Nominal frequency (Hz)

RES:

Renewable energy source

SMG:

Standalone microgrid

LFC:

Load frequency control

CCSA:

Chaotic crow search algorithm

FDR:

Frequency deviation response

DG:

Distributed generation

PID:

Proportional integral derivative

WTG:

Wind turbine generator

PV:

Photovoltaic

DEG:

Diesel engine generator

EV:

Electric vehicle

FC:

Fuel cell

BESS:

Battery energy storage system

FESS:

Flywheel energy storage system

AE:

Aqua electrolyzer

CB:

Circuit breaker

\(J_{\mathrm{P}}\) :

Performance index

ITAE:

Integral of the time multiplied absolute error

\(T_{sim}\) :

Simulation time (s)

\(\varDelta {P_{D}}\) :

Incremental load change (pu MW)

D :

Load damping coefficient (pu MW/Hz)

H :

Inertia constant of the MG (s)

R :

Governor speed regulation coefficient (Hz/pu MW)

\(T_{\mathrm{G}}\) :

Governor time constant (s)

\(T_{\mathrm{T}}\) :

Turbine time constant (s)

\(T_{\mathrm{DEG}}\) :

DEG time constant (s)

\(T_{\mathrm{EV}}\) :

EV time constant (s)

\(T_{\mathrm{BESS}}\) :

BESS time constant (s)

\(K_{\mathrm{BESS}}\) :

BESS gain

\(T_{\mathrm{FESS}}\) :

FESS time constant (s)

\(K_{\mathrm{FESS}}\) :

FESS gain

\(T_{\mathrm{AE}}\) :

AE time constant (s)

\(K_{\mathrm{AE}}\) :

AE gain

\(T_{\mathrm{PV}}\) :

PV time constant (s)

\(K_{\mathrm{PV}}\) :

PV gain

\(T_{\mathrm{WTG}}\) :

WTG time constant (s)

\(K_{\mathrm{WTG}}\) :

WTG gain

\(T_{\mathrm{FC}}\) :

FC time constant (s)

\(K_{\mathrm{FC}}\) :

FC gain

\(\delta _{\mathrm{DEG}}\) :

Power increment limit of the DEG

References

  1. Hote, Y.V.; Jain, S.: Controller design for load frequency control: past, present and future challenges. IFAC Papers Online, Science Direct 51(4), 604–609 (2018)

  2. Hossain, M.A.; Pota, H.R.; Hossain, M.J.; Blaabjerg, F.: Evolution of microgrids with converter-interfaced generations: challenges and opportunities. Electr. Power Energy Syst. 109, 160–186 (2019)

    Article  Google Scholar 

  3. Mohammadi, F.D.; Keshtkar, H.; Feliachi, A.: State space modeling, analysis and distributed secondary frequency control of isolated microgrids. IEEE Trans. Energy Conver. 74, 1–10 (2017). https://doi.org/10.1109/TEC.2017.2757012

    Article  Google Scholar 

  4. Ali, R.; Mohamed, T.H.; Qudaih, Y.S.; Mitani, Y.: A new load frequency control approach in an isolated small power systems using coefficient diagram method. Electr. Power Energy Syst 56, 110–116 (2014)

    Article  Google Scholar 

  5. Ray, P.K.; Mohanty, S.R.; Kishor, N.: Proportional integral controller based small-signal analysis of hybrid distributed generation systems. Energy Convers. Manag. 52, 1943–1954 (2011)

    Article  Google Scholar 

  6. Saha, D.; Saikia, L.C.: Automatic generation control of an interconnected CCGT-thermal system using stochastic fractal search optimized classical controllers. Int. Trans. Electr. Energy Syst. 81, 1–25 (2018)

    Google Scholar 

  7. Gheisarnejad, M.; Khooban, M.H.: Secondary load frequency control for multi-microgrids: HiL real-time simulation. Soft Comput. 77, 1–14 (2018)

    Google Scholar 

  8. Bevrani, H.; Feizi, M.R.; Ataee, S.: Robust frequency control in an islanded microgrid: H-\(\infty \) and \(\mu \)-synthesis approaches. IEEE Trans. Smart Grid 7(2), 706–717 (2016). https://doi.org/10.1109/TSG.2015.2446984

    Article  Google Scholar 

  9. Elsisi, M.; Soliman, M.; Aboelela, M.A.S.; Mansour, W.: Model predictive control of plug-in hybrid electric vehicles for frequency regulation in a smart grid. IET Gener. Transm. Distrib. 11(16), 3974–3983 (2017)

    Article  Google Scholar 

  10. Annamraju, A.; Nandiraju, S.: Robust frequency control in an autonomous microgrid: a two-stage adaptive fuzzy approach. Electr. Power Compon. Syst. 10, 1–12 (2018)

    Google Scholar 

  11. Debbarma, S.; Saikia, L.C.; Sinha, N.: Robust two-degree-of-freedom controller for automatic generation control of multi-area system. Electr. Power Energy Syst. 63, 878–886 (2013)

    Article  Google Scholar 

  12. Guha, D.; Roy, P.K.; Banerjee, S.: Optimal tuning of 3 degree-of-freedom proportional-integral-derivative controller for hybrid distributed power system using dragonfly algorithm. Comput. Electr. Eng. 72, 137–153 (2018)

    Article  Google Scholar 

  13. Sondhi, S.; Hote, Y.V.: Fractional order PID controller for load frequency control. Energy Convers. Manag. 85, 343–353 (2014)

    Article  Google Scholar 

  14. Pan, I.; Das, S.: Fractional order AGC for distributed energy resources using robust optimization. IEEE Trans. Smart Grid 28, 10 (2015)

    Google Scholar 

  15. Dulau, M.; Gligor, A.; Dulau, T.M.: Fractional order controllers versus integer order controllers. In: 10th International Conference Interdisciplinarity in Engineering, vol. 181, pp. 538–545. INTER-ENGProcedia Engineering, ScienceDirect (2017)

  16. Guha, R.: Banerjee: A Maiden Application of Salp Swarm Algorithm Optimized Cascade Tilt-Integral Derivative Controller for Load Frequency Control of Power Systems, pp. 1–12. IET Generation, Transmission and Distribution (2018)

  17. Pan, I.; Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  18. Sayed, G.I.; Hassanien, A.E.; Azar, A.T.: Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 29, 1–18 (2017)

    Article  Google Scholar 

  19. Zhu, W.; Duan, H.: Chaotic predator-prey biogeography-based optimization approach for UCAV path planning. Aerosp. Sci. Technol. 32, 153–161 (2014)

    Article  Google Scholar 

  20. Mukherjee, A.; Mukherjee, V.: Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solitons Fractals 78, 10–21 (2015)

    Article  MathSciNet  Google Scholar 

  21. Kohli, M.; Arora, S.: Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. (2017). https://doi.org/10.1016/j.jcde.2017.02.005

    Article  Google Scholar 

  22. Farahani, M.; Ganjefar, S.; Alizadeh, M.: PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory Appl. 6(13), 1984–1992 (2012)

    Article  MathSciNet  Google Scholar 

  23. Pan, I.; Das, S.: Fractional-order load-frequency control of interconnected powersystems using chaotic multi-objective optimization. Appl. Soft Comput. 10, 19 (2015)

    Google Scholar 

  24. Rizk-Allah, R.M.; Hassanien, A.E.; Bhattacharyya, S.: Chaotic crow search algorithm for fractional optimization problems. Appl. Soft Comput. (2018). https://doi.org/10.1016/j.asoc.2018.03.019

    Chapter  Google Scholar 

  25. Khooban, M.H.; Niknam, T.; Blaabjerg, F.; Davari, P.; Dragicevic, T.: A robust adaptive load frequency control for micro-grids. ISA Trans. 14, 1–10 (2016)

    Google Scholar 

  26. Singh, V.P.; Mohanty, S.R.; Kishor, N.; Ray, P.K.: Robust H-infinity load frequency control in hybrid distributed generation system. Electr. Power Energy Syst. 46, 294–305 (2013)

    Article  Google Scholar 

  27. Lee, D.J.; Wang, L.: Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: time-domain simulations. IEEE Trans. Energy Convers. 20(1), 311–320 (2008)

    Article  Google Scholar 

  28. Bevrani, H.; Habibi, F.; Babahajyani, P.; Watanabe, M.; Mitani, Y.: Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 1, 95 (2012)

    Google Scholar 

  29. Jamshidi, F.; Salehizadeh, M.R.; Gholami, F.; Shafie-khah, M.: An Optimal Approach for Load-Frequency Control of Islanded Microgrids Based on Nonlinear Model. In: Optimization, Learning, and Control for Interdependent Complex Networks, Advances in Intelligent Systems and Computing, vol. 1123. Springer Nature Switzerland AG 2020 (2020)

  30. Shimizu, K.; Masuta, T.; Ota, Y.; Yokoyama, A.: Load frequency control in power system using vehicle-to-grid system considering the customer convenience of electric vehicles. In: 2010 International Conference on Power System Technology, pp. 1–8 (2010)

  31. Khadanga, R.K.; Padhy, S.; Panda, S.; Kumar, A.: Design and analysis of tilt integral derivative controller for frequency control in an islanded microgrid: a novel hybrid dragonfly and pattern search algorithm approach. Arabian J. Sci. Eng. 10, 92 (2018)

    Google Scholar 

  32. Oh, S.K.; Jang, H.J.; Pedrycz, W.: Optimized fuzzy PD cascade controller: a comparative analysis and design. Simul. Model. Pract. Theory 19, 181–195 (2011)

    Article  Google Scholar 

  33. Morsali, J.; Zare, K.; Hagh, M.T.: Comparative performance evaluation of fractional order controllers in LFC of two-area diverse-unit power system with considering GDB and GRC effects. J. Electr. Syst. Inf. Technol. 5(3), 708–722 (2017)

    Article  Google Scholar 

  34. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvnesh Khokhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhar, B., Dahiya, S. & Parmar, K.P.S. A Novel Hybrid Fuzzy PD-TID Controller for Load Frequency Control of a Standalone Microgrid. Arab J Sci Eng 46, 1053–1065 (2021). https://doi.org/10.1007/s13369-020-04761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04761-7

Keywords

Navigation