Skip to main content
Log in

Mixed Convection in Unsteady Stagnation Point Flow of Maxwell Fluid Subject to Modified Fourier’s Law

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The extrusion process of polymers in the industry is greatly depends on the heat transport mechanism in the viscoelastic fluid flow for the better quality of product. Therefore, nowadays, the researchers deeply investigate the properties of thermal transport in the flow with various physical effects. This research article is proposed to study the rheology of stagnation point flow of viscoelastic fluid over the vertical stretching cylinder with the impact of buoyancy force. The non-Fourier’s heat flux model is considered here for the transportation of thermal energy in fluid flow. Additionally, the analysis for two types of surface heating agents, namely constant wall temperature (CWT) and prescribed surface temperature (PST) is performed. The resulting partial differential equations for governing the flow and heat transport problem are transformed into ordinary differential system through suitable similarity variables. Numerical solutions are obtained by utilizing bvp4c built in MATLAB technique. The acquired results for temperature field are presented graphically with the comparison of CWT and PST. The outcomes of present study reveal that higher rate of heat transfer is observed in the case of CWT. Moreover, it is noted that higher values of buoyancy parameter enhance fluid flow velocity for assisting mode. The increasing values of thermal relaxation time parameter decrease the heat transport in the fluid. A comparison is given of surface velocity gradient for magnetic parameter and Deborah number with existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Naccache, M.F.; Mendes, P.R.S.: Heat transfer to non-Newtonian fluids in laminar flow through rectangular ducts. Int. J. Heat Fluid Flow. 17, 613–620 (1996)

    Article  Google Scholar 

  2. Shin, S.: The effect of the shear rate-dependent thermal conductivity of non-newtonian fluids on the heat transfer in a pipe flow. Int. Commun. Heat Mass Transf. 23, 665–678 (1996)

    Article  Google Scholar 

  3. Nouri, J.M.; Whitelaw, J.H.: Flow of Newtonian and non-Newtonian fluids in an eccentric annulus with rotation of the inner cylinder. Int. J. Heat Fluid Flow. 18, 236–246 (1997)

    Article  Google Scholar 

  4. Attia, H.A.: Numerical study of flow and heat transfer of a non-Newtonian fluid on a rotating porous disk. Appl. Math. Comput. 163, 327–342 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Khan, M.A.; Ahmed, A.; Ahmed, J.: Boundary layer flow of Maxwell fluid due to torsional motion of cylinder: modeling and simulation. Appl. Math. Mech. Engl. Ed. 41, 667–680 (2020)

    Article  Google Scholar 

  6. Ahmed, J.; Khan, M.; Ahmad, L.: Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction. Phys. A Stat. Mech. Appl. 551, 123948 (2020)

    Article  MathSciNet  Google Scholar 

  7. Saleem, M.; Haider, A.: Heat and mass transfer on the peristaltic transport of non-Newtonian fluid with creeping flow. Int. J. Heat Mass Transf. 68, 514–526 (2014)

    Article  Google Scholar 

  8. Shi, Y.; Tang, G.H.: Simulation of Newtonian and non-Newtonian rheology behavior of viscous fingering in channels by the lattice Boltzmann method. Comput. Math. Appl. 68, 1279–1291 (2014)

    Article  MathSciNet  Google Scholar 

  9. Sandeep, N.; Malvandi, A.: Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles. Adv. Powder Technol. 27, 2448–2456 (2016)

    Article  Google Scholar 

  10. Rashidi, M.M.; Bagheri, S.; Momoniat, E.; Freidoonimehr, N.: Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet. Ain Shams Eng. J. 8, 77–85 (2017)

    Article  Google Scholar 

  11. Na, T.Y.; Pop, I.: Flow and heat transfer over a longitudinal circular cylinder moving in parallel or reversely to a free stream. Acta Mech. 118, 185–195 (1996)

    Article  Google Scholar 

  12. Kumari, M.; Nath, G.: Unsteady flow and heat transfer of a viscous fluid in the stagnation region of a three-dimensional body with a magnetic field. Int. J. Eng. Sci. 40, 411–432 (2002)

    Article  Google Scholar 

  13. Toh, K.C.; Chen, X.Y.; Chai, J.C.: Numerical computation of fluid flow and heat transfer in microchannels. Int. J. Heat Mass Transf. 45, 5133–5141 (2002)

    Article  Google Scholar 

  14. Khan, W.A.; Irfan, M.M.: Khan: an improved heat conduction and mass diffusion models for rotating flow of an Oldroyd-B fluid. Results Phys. 7, 3583–3589 (2017)

    Article  Google Scholar 

  15. Ibrahim, W.: Three dimensional rotating flow of Powell–Eyring nanofluid with non-Fourier’s heat flux and non-Fick’s mass flux theory. Results Phys. 8, 569–577 (2018)

    Article  Google Scholar 

  16. Upadhya, S.M.: Mahesha. Raju CSK: Cattaneo–Christov heat flux model for magnetohydrodynamic flow in a suspension of dust particles towards a stretching sheet. Nonlinear Eng. 7, 237–246 (2018)

    Article  Google Scholar 

  17. Moshkin, N.P.; Pukhnachev, V.V.; Bozhkov, Y.D.: On the unsteady, stagnation point flow of a Maxwell fluid in 2D. Int. J. Non-Linear Mech. 116, 32–38 (2019)

    Article  Google Scholar 

  18. Mahanthesh, B.: Hall effect on two-phase laminar boundary layer flow of dusty liquid due to stretching of an elastic flat sheet. Mapana J. Sci. 16(3), 13–26 (2017)

    Article  Google Scholar 

  19. Gireesha, B.J.; Mahanthesh, B.; Thammanna, G.T.; Sampathkumar, P.B.: Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J. Mol. Liq. 256, 139–147 (2018)

    Article  Google Scholar 

  20. Mahanthesh, B.; Gireesha, B.J.; Thammanna, G.T.; Shehzad, S.A.; Abbasi, F.M.; Gorla, R.S.R.: Nonlinear convection in nano Maxwell fluid with nonlinear thermal radiation: a three-dimensional study. Alex. Eng. J. 57(3), 1927–1935 (2018)

    Article  Google Scholar 

  21. Mahanthesh, B.; Shashikumar, N.S.; Gireesha, B.J.; Animasaun, I.L.: Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty \(TiO_{2}\)–EO nanoliquid with nonlinear radiative heat. J. Comput. Des. Eng. 6(4), 551–561 (2019)

    Google Scholar 

  22. Mahanthesh, B.; Shehzad, S.A.; Ambreen, T.; Khan, S.U.: Significance of Joule heating and viscous heating on heat transport of \(MoS_{2}\)–Ag hybrid nanofluid past an isothermal wedge. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09578-y

    Article  Google Scholar 

  23. Cheng, W.T.; Lin, C.H.: Melting effect on mixed convective heat transfer with aiding and opposing external flows from the vertical plate in a liquid-saturated porous medium. Int. J. Heat Mass Transf. 50, 3026–3034 (2007)

    Article  Google Scholar 

  24. Li, W.; Feng, Z.Z.: Laminar mixed convection of large-Prandtl-number in-tube nanofluid flow, Part II: Correlations. Int. J. Heat Mass Transf. 65, 928–935 (2013)

    Article  Google Scholar 

  25. Hayat, T.; Ullah, I.; Alsaedi, A.; Waqas, M.; Ahmad, B.: Three-dimensional mixed convection flow of Sisko nanoliquid. Int. J. Mech. Sci. 133, 273–282 (2017)

    Article  Google Scholar 

  26. Ahmed, S.E.; Raizah, Z.A.S.; Aly, A.M.: Entropy generation due to mixed convection over vertical permeable cylinders using nanofluids. J. King Saud Univ. Sci. (2017). https://doi.org/10.1016/j.jksus.2017.07.010

    Article  Google Scholar 

  27. Mahapatra, T.R.; Nandy, S.K.; Gupta, A.S.: Magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface. Int. J. Non-Linear Mech. 44, 124–129 (2009)

    Article  Google Scholar 

  28. Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Buoyancy effects in stagnation-point flow of Maxwell fluid utilizing non-Fourier heat flux approach. PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0192685

    Article  Google Scholar 

  29. Abel, M.S.; Tawade, J.V.; Nandeppanavar, M.M.: MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47, 385–393 (2012)

    Article  MathSciNet  Google Scholar 

  30. Megahed, A.M.: Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin. Phys. B. (2013). https://doi.org/10.1088/1674-1056/22/9/094701

    Article  Google Scholar 

  31. Mustafa, M.; Hayat, T.; Alsaedi, A.: Rotating flow of Maxwell fluid with variable thermal conductivity: an application to non-Fourier heat flux theory. Int. J. Heat Mass Transf. 106, 142–148 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Nadeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Khan, M., Ahmed, J. et al. Mixed Convection in Unsteady Stagnation Point Flow of Maxwell Fluid Subject to Modified Fourier’s Law. Arab J Sci Eng 45, 9439–9447 (2020). https://doi.org/10.1007/s13369-020-04724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04724-y

Keywords

Navigation