Skip to main content
Log in

Flow and heat transfer over a longitudinal circular cylinder moving in parallel or reversely to a free stream

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Steady laminar boundary layer flow and heat transfer over a thin longitudinal isothermal circular cylinder moving in a flowing stream has been studied in this paper. The cases in which the cylinder is moving in the same (parallel) or in the opposite (reverse) direction to the free stream are considered. The transformed nonsimilar boundary layer equations are solved numerically using the Keller-box method for some values of the curvature parameter, the Prandtl number and relative velocity parameter. The results show that the velocity and temperature distributions as well as the coefficients of skin friction and the local Nusselt number are appreciably affected by the relative velocity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C f :

skin friction coefficient

f :

reduced stream function

k :

thermal conductivity

Nu:

Nusselt number

Pr:

Prandtl number

q :

heat transfer

r o :

radius of the cylinder

r :

radial coordinate

Re:

Reynolds number

T :

temperature

x :

axial coordinate

u, v :

velocity component inx- andr-directions

ξ:

curvature parameter

η:

pseudo-similarity variable

θ:

dimensionless temperature

λ:

relative velocity parameter

μ:

dynamic viscosity

ν:

kinematic viscosity

τ:

skin friction

ϱ:

density

ψ:

stream function

References

  1. Seban, R. A., Bond, R.: Skin friction and heat transfer characteristics of a laminar boundary layer on a circular cylinder in axial incompressible flow. J. Aero. Sci.18, 671–675 (1951).

    Google Scholar 

  2. Kelly, H. R.: A Note on the laminar boundary layer on a circular cylinder in axial incompressible flow. J. Aero. Sci.21, 634 (1962).

    Google Scholar 

  3. Glauert, M. B.: The axisymmetric boundary layer on a long cylinder. Proc. R. Soc London Ser.A 230, 189–203 (1954).

    Google Scholar 

  4. Stewartson, K.: The asymptotic boundary layer on a circular cylinder in axial incompressible flow. Q. Appl. Math.13, 113–122 (1955).

    Google Scholar 

  5. Wanous, P. J., Sparrow, E. M.: Longitudinal flow over a circular cylinder with surface mass transfer. A.I.A.A. J.3, 147–149 (1965).

    Google Scholar 

  6. Jaffe, N. A., Okamura, T. T.: The transverse curvature effect of the incompressible boundary layer for longitudinal flow over a cylinder. ZAMP19, 564–574 (1968).

    Google Scholar 

  7. Cebeci, T.: Laminar and turbulent incompressible boundary layers on slender bodies of revolution in axial flow. J. Basic Eng.92, 545–553 (1970).

    Google Scholar 

  8. Curle, S. N.: Calculation of the axisymmetric boundary layer on a long thin cylinder. Proc. R. Soc. London Ser.A 372, 555–564 (1979).

    Google Scholar 

  9. Lin, H. T., Shih, Y. P.: Laminar boundary layer heat transfer along static and moving cylinders. J. Chin. Inst. Eng.3, 73–79 (1980).

    Google Scholar 

  10. Sawchuk, S. P., Zamir, M.: Boundary layer on a circular cylinder in axial flow. Int. J. Heat Fluid Flow13, 184–188 (1992).

    Google Scholar 

  11. Sakiadis, B. C.: Boundary layer behavior on continuous solid surfaces. III. The boundary layer on a continuous cylindrical-surface. A.I.Ch.E. J.7, 467–472 (1961).

    Google Scholar 

  12. Rotte, J. W., Beek, W. J.: Some models for the calculation of heat transfer coefficients to a moving continuous cylinder. Chem. Eng. Sci.24, 705–716 (1969).

    Google Scholar 

  13. Karnis, J., Pechoc, V.: The thermal laminar boundary layer on a continuous cylinder. Int. J. Heat Mass Transfer21, 43–47 (1978).

    Google Scholar 

  14. Choi, I. G.: The effect of variable properties of air on the boundary layer for a moving continuous cylinder. Int. J. Heat Mass Transfer25, 597–602 (1982).

    Google Scholar 

  15. Pop, I., Kumari, M., Nath, G.: Non-Newtonian boundary layers on a moving cylinder. Int. J. Eng. Sci.28, 303–312 (1990).

    Google Scholar 

  16. Eswara, A. T., Nath, G.: Unsteady forced convection laminar boundary layer flow over a moving longitudinal cylinder. Acta Mech.93, 13–28 (1992).

    Google Scholar 

  17. Keller, H. B., Cebeci, T.: Accurate numerical methods for boundary layers. Part I. Two-dimensional laminar flows. In: Proc. 2nd Int. Conf. Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, Vol. 8, New York: Springer 1971.

    Google Scholar 

  18. Lin, H. T., Huang, S. F.: Flow and heat transfer of plane surfaces moving in parallel and reversely to the free stream. Int. J. Heat Mass Transfer37, 333–336 (1994).

    Google Scholar 

  19. Na, T. Y.: Numerical solutio of natural convection flows past a non-isothermal vertical flat plate. Appl. Sci. Res.33, 519–543 (1978).

    Google Scholar 

  20. Na, T. Y.: Computational methods in engineering boundary value problems. New York: Academic Press 1979.

    Google Scholar 

  21. Na, T. Y., Pop, I.: Free convection flow past a vertical flat plate embedded in a saturated porous medium. Int. J. Eng. Sci.21, 517–526 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Superscript

Superscript

Superscript

Superscript

Superscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, T.Y., Pop, I. Flow and heat transfer over a longitudinal circular cylinder moving in parallel or reversely to a free stream. Acta Mechanica 118, 185–195 (1996). https://doi.org/10.1007/BF01410516

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410516

Keywords

Navigation