Skip to main content

Advertisement

Log in

Optimization of Milling Parameters for Energy Savings and Surface Quality

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Enhancing energy efficiency and product quality by means of optimal inputs is a cost-effective solution, as compared to the drastic investment. This paper aims to optimize the machining inputs to enhance energy efficiency (EF) as well as the power factor (PO) and decrease the surface roughness (Ra) for the milling process. The factors considered are the feed (f), depth of cut (a), milling speed (V), and tool radius (r). The machining operations were executed on the vertical milling under the dry condition for the stainless steel 304. A type of neutral network entitled the radius basic function (RBF) was used to render the relationships between milling inputs and performances measured. The adaptive simulated annealing (ASA) algorithm was applied to obtain the optimal values. The outcomes indicated that the milling responses are primarily influenced by a, f, V, and r, respectively. The reduction in Ra is approximately 39.18%, while the improvements in EF and PO are around 22.61% and 26.47%, respectively, as compared to the initial parameter settings. The explored findings are expected as a prominent solution for the industrial application of the dry machining. The combination of the RBF models and ASA could be considered as an efficient approach for modeling dry machining processes and generating reliable as well as feasible optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ryzhkin, A.A.; Shuchev, K.G.; Aliev, M.M.; Gusev, V.V.: Dissipative properties of lubricant and coolant fluid in cutting and friction. Russ. Eng. Res. 28, 1243–1247 (2008)

    Article  Google Scholar 

  2. Aydın, M.; Karakuzu, C.; Uçar, M.; Cengiz, A.; Çavuşlu, M.A.: Prediction of surface roughness and cutting zone temperature in dry turning processes of AISI304 stainless steel using ANFIS with PSO learning. Int. J. Adv. Manuf. Technol. 67, 957–967 (2013)

    Article  Google Scholar 

  3. Shihab, S.K.; Khan, Z.A.; Mohammad, A.; Siddiquee, A.N.: Optimization of surface integrity in dry hard turning using RSM. Sadhana 39, 1035–1053 (2014)

    Article  Google Scholar 

  4. Mia, M.; Dhar, N.R.: Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arab. J. Sci. Eng. 43, 1125–1136 (2018)

    Article  Google Scholar 

  5. Angappan, P.; Thangiah, S.; Subbarayan, S.: Taguchi-based grey relational analysis for modeling and optimizing machining parameters through dry turning of Incoloy 800H. J. Mech. Sci. Technol. 31, 4159–4165 (2017)

    Article  Google Scholar 

  6. Zerti, O.; Yallese, M.A.; Khettabi, R.; Chaoui, K.; Mabrouki, T.: Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. Int. J. Adv. Manuf. Technol. 89, 1915–1943 (2017)

    Article  Google Scholar 

  7. Tamang, S.K.; Chandrasekaran, M.; Sahoo, A.K.J.: Sustainable machining: an experimental investigation and optimization of machining Inconel 825 with dry and MQL approach. Braz. Soc. Mech. Sci. Eng. 40, 374 (2018)

    Article  Google Scholar 

  8. Al-Zubaidi, S.; Ghani, J.A.; Che Haron, C.H.: Prediction of tool life when end milling of Ti6Al4V alloy using hybrid learning system. Arab. J. Sci. Eng. 39, 5095–5111 (2014)

    Article  Google Scholar 

  9. Karabulut, Ş.; Gökmen, U.; Çinici, H.: Optimization of machining conditions for surface quality in milling AA7039-based metal matrix composites. Arab. J. Sci. Eng. 43, 1071–1082 (2018)

    Article  Google Scholar 

  10. Li, H.; He, G.; Qin, X.; Wang, G.; Lu, C.; Gui, L.: Tool wear and hole quality investigation in dry helical milling of Ti–6Al–4V alloy. Int. J. Adv. Manuf. Technol. 71, 1511–1523 (2014)

    Article  Google Scholar 

  11. Le Coz, G.; Dudzinski, D.: Temperature variation in the workpiece and in the cutting tool when dry milling Inconel 718. Int. J. Adv. Manuf. Technol. 74, 1133–1139 (2014)

    Article  Google Scholar 

  12. Jomaa, W.; Lévesque, J.; Bocher, P.; et al.: Optimization study of dry peripheral milling process for improving aeronautical part integrity using grey relational analysis. Int. J. Adv. Manuf. Technol. 91, 931–942 (2017)

    Article  Google Scholar 

  13. Khettabi, R.; Nouioua, M.; Djebara, A.; Songmene, V.: Effect of MQL and dry processes on the particle emission and part quality during milling of aluminum alloys. Int. J. Adv. Manuf. Technol. 92, 2593–2598 (2017)

    Article  Google Scholar 

  14. Safari, H.; Sharif, S.; Izman, S.; Jafari, H.: Surface integrity characterization in high-speed dry end milling of Ti–6Al–4V titanium alloy. Int. J. Adv. Manuf. Technol. 78, 651–657 (2015)

    Article  Google Scholar 

  15. Shi, K.; Zhang, D.; Ren, J.: Optimization of process parameters for surface roughness and microhardness in dry milling of magnesium alloy using Taguchi with grey relational analysis. Int. J. Adv. Manuf. Technol. 81, 645–651 (2015)

    Article  Google Scholar 

  16. Karabulut, Ş.; Çinici, H.; Karakoç, H.: Experimental investigation and optimization of cutting force and tool wear in milling Al7075 and open-cell SiC foam composite. Arab. J. Sci. Eng. 41, 1797–1912 (2016)

    Article  Google Scholar 

  17. Baowan, P.; Saikaew, C.; Wisitsoraat, A.: Influence of helix angle on tool performances of TiAlN- and DLC-coated carbide end mills for dry side milling of stainless steel. Int. J. Adv. Manuf. Technol. 90, 3085–3097 (2017)

    Article  Google Scholar 

  18. Campatelli, G.; Lorenzini, L.; Scippa, A.: Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel. J. Clean. Prod. 66, 309–316 (2014)

    Article  Google Scholar 

  19. Yang, Y.; Li, X.; Gao, L.; Sao, X.: Modeling and impact factors analyzing of energy consumption in CNC face milling using GRASP gene expression programming. Int. J. Adv. Manuf. Technol. 87, 1247–1263 (2016)

    Article  Google Scholar 

  20. Zhang, H.; Deng, S.; Fu, Y.; Lishu, L.; Yan, C.: A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. J. Clean. Prod. 148, 174–184 (2017)

    Article  Google Scholar 

  21. Bilga, P.S.; Singh, S.; Kumar, R.: Optimization of energy consumption response parameters for turning operation using Taguchi method. Clean. Prod. 137, 1406–1417 (2016)

    Article  Google Scholar 

  22. Shihab, S.K.: Optimization of WEDM process parameters for machining of friction-stir-welded 5754 aluminum alloy using box-behnken design of RSM. Arab. J. Sci. Eng. 43, 5017–5027 (2018)

    Article  Google Scholar 

  23. Keshtegara, B.; Mert, C.; Kisic, O.: Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renew. Sustain. Energy Rev. 2018(81), 330–341 (2018)

    Article  Google Scholar 

  24. Huibin, S.; Dali, C.; Zidong, Zh; Xia, K.: A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process. IEEE T. Reliab. 67, 1294–1303 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.04-2020.02

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung-Thanh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TT., Nguyen, TA. & Trinh, QH. Optimization of Milling Parameters for Energy Savings and Surface Quality. Arab J Sci Eng 45, 9111–9125 (2020). https://doi.org/10.1007/s13369-020-04679-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04679-0

Keywords

Navigation