Skip to main content

Advertisement

Log in

Fuzzy-based Clustering Scheme with Sink Selection Algorithm for Monitoring Applications of Wireless Sensor Networks

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are predominantly used for monitoring applications. The sensor nodes are resource-constrained devices, and hence efficient energy utilization of these nodes is one of the major challenges. The communication distances directly impact on the energy consumption of the sensor nodes. Clustering methods are popularly used to reduce communication distances and prolong the network lifetime. Multi-sink deployment is another method to reduce communication distances. It also resolves congestion and hotspot issues. In multi-sink WSNs, the number of sinks to be considered is a challenging task as it affects the network topology, lifetime and deployment cost. In this research work, multi-sink deployment and clustering scheme with sink selection algorithm are jointly proposed to maximize the network lifetime and minimize the deployment cost. An iterative filtering model is proposed to estimate optimal number of sinks, while sink positions are determined based on Fuzzy logic inference system (FLIS). Fuzzy-c-means algorithm is used to form balanced clusters in the network. Cluster representative and sink selection processes are based on FLIS. The proposed optimal multi-sink deployment scheme reduces the deployment cost and the propagation delay of the system, while enhancing the network lifetime. The proposed scheme is also energy efficient in the case of higher node density. Hence, the proposed scheme can be suitably implemented for large-scale monitoring applications of WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Stankovic, J.A.: Research directions for the Internet of things. IEEE Internet of Things J. 1(1), 3–9 (2014)

    MathSciNet  Google Scholar 

  2. Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z.: IoT middleware: a survey on issues and enabling technologies. IEEE Internet of Things Journal 4(1), 1–20 (2017)

    Google Scholar 

  3. Othman, M.F.; Shazali, K.: Wireless sensor network applications: a study in environment monitoring system. Int. Symp. Robot. Intell. Sens. 41, 1204–1210 (2012)

    Google Scholar 

  4. Tifenn, R.; Abdelmadjid, B.; Yacine, C.: Energy efficiency in wireless sensor networks: a top down survey. Comput. Netw. 67, 104–122 (2014)

    Google Scholar 

  5. Curry, R.M.; Smith, J.C.: A survey of optimization algorithms for wireless sensor network lifetime maximization. Comput. Ind. Eng. 101, 145–166 (2016)

    Google Scholar 

  6. Chong, C.Y.; Kumar, S.P.: Sensor Networks: evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2003)

    Google Scholar 

  7. Mahmood, M.A.; Seah, W.K.; Welch, I.: Reliability in wireless sensor networks: a survey and challenges ahead. Comput. Netw. 79, 166–187 (2015)

    Google Scholar 

  8. Wendi, H.R.; Chandrakasan, A.; Balakrishnan, H.: Energy efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Hawaii International Conference on System Science, pp. 1–10 (2002)

  9. Baranidharan, B.; Santhi, B.: FLECH: fuzzy logic based energy efficient clustering hierarchy for non-uniform wireless sensor networks. Wirel. Commun. Mobile Comput. 2017, 1–17 (2017)

    Google Scholar 

  10. Kim, H.Y.: An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. Clust. Comput. 19, 279–283 (2016)

    Google Scholar 

  11. Leu, J.S.; Chiang, T.H.; Yu, M.C.; Su, K.W.: Energy efficient clustering scheme for prolonging the lifetime of wireless sensor network with isolated nodes. IEEE Commun. Lett. 19(2), 259–262 (2015)

    Google Scholar 

  12. Xie, D.; Zhou, Q.; You, X.; Li, B.; Yuan, X.: A novel energy-efficient cluster formation strategy: from the perspective of cluster members. IEEE Commun. Lett. 17(11), 2044–2047 (2013)

    Google Scholar 

  13. Hoang, D.C.; Kumar, R.; Panda, S.K.: Realization of a cluster-based protocol using fuzzy-c-means algorithm for wireless sensor networks. Wirel. Sens. Syst. 3(3), 163–171 (2013)

    Google Scholar 

  14. Zhao, C.; Wu, C.; Wang, X.; Ling, B.W.; Teo, K.L.; Lee, J.M.; Jung, K.H.: Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing. Appl. Math. Model. 49, 319–337 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Mansouri, V.S.; Wong, V.W.: Lexicographically optimal routing for wireless sensor networks with multiple sinks. IEEE Trans. Veh. Technol. 58(3), 1490–1500 (2009)

    Google Scholar 

  16. Mancilla, M.C.; Mellado, E.L.; Siller, M.; Fapojuwo, A.: An efficient reconfigurable ad-hoc algorithm for multi-sink wireless sensor networks. Int. J. Distrib. Sens. Netw. (2017). https://doi.org/10.1177/1550147717733390

    Article  Google Scholar 

  17. Jain, T.K.; Saini, D.S.; Bhooshan, S.V.: Lifetime optimization of a multiple sink wireless sensor network through energy balancing. J. Sens. (2015). https://doi.org/10.1155/2015/921250

    Article  Google Scholar 

  18. Borges, L.M.; Velez, F.J.; Lebres, A.S.: Survey on the characterization and classification of wireless sensor network applications. IEEE Commun. Surv. Tutor. 16(4), 1860–1890 (2014)

    Google Scholar 

  19. Jie, W.; Qinghua, G.; Hongyu, W.; Hongyang, C.; Minglu, J.: Robust tracking algorithm for wireless sensor networks based on improved particle filter. Wirel. Commun. Mob. Comput. 12, 891–900 (2012)

    Google Scholar 

  20. Hongyang, C.; Kaoru, S.: Distributed target tracking algorithm for wireless sensor networks. In: The Proceedings of IEEE ICCC, (2011)

  21. Khoa, V.V.; Takayama, S.: Wireless sensor network in landslide monitoring system with remote data management. Measurement 118, 214–229 (2018)

    Google Scholar 

  22. Zhong, Y.; Ma, A.; Zhang, L.: An adaptive memetic fuzzy clustering algorithm with spatial information for remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(4), 1235–1248 (2014)

    Google Scholar 

  23. Wang, J.; Yin, Y.; Zhang, J.; Lee, S.; Sherratt, R.S.: Mobility based energy efficient and multi-sink algorithms for consumer home networks. IEEE Trans. Consum. Electron. 59(1), 77–84 (2013)

    Google Scholar 

  24. Pantaziz, N.A.; Nikolidakis, S.A.; Vergados, D.D.: Energy efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2013)

    Google Scholar 

  25. Snigdh, I.; Gosain, D.; Gupta, N.: Optimal sink placement in backbone assisted wireless sensor networks. Egypt. Inf. J. 17, 217–225 (2016)

    Google Scholar 

  26. Masdari, M.; Naghiloo, F.: Fuzzy logic based sink selection and load balancing in multi-sink wireless sensor networks. Wirel. Pers. Commun. 97, 2713–2739 (2017)

    Google Scholar 

  27. Hani, R.M.; Ijjeh, A.A.: A survey on LEACH based energy aware protocols for wireless sensor networks. J. Commun. 8(3), 192–206 (2013)

    Google Scholar 

  28. Singh, S.K.; Kumar, P.; Singh, J.P.: A survey on successors of LEACH protocol. IEEE Access 5, 4298–4328 (2017)

    Google Scholar 

  29. Lin, H.; Wang, L.; Kong, R.: Energy efficient clustering protocol for large scale sensor networks. IEEE Sens. J. 15(12), 7150–7160 (2015)

    Google Scholar 

  30. Xu, Z.; Chen, L.; Chen, C.; Guan, X.: Joint clustering and routing design for reliable and efficient data collection in large scale wireless sensor networks. IEEE Internet Things J. 3(4), 520–532 (2016)

    Google Scholar 

  31. Rohit, P.; Deepti, S.: LAR-CH: a cluster-head rotation approach for sensor networks. IEEE Sens. J. 18(23), 9821–9828 (2018)

    Google Scholar 

  32. Kumar, D.: Performance analysis of energy efficient clustering protocols for maximizing lifetime of wireless sensor networks. Wirel. Sens. Syst. 4(1), 9–16 (2014)

    Google Scholar 

  33. Castano, F.; Rossi, A.; Sevaux, M.; Velasco, N.: On the use of multiple sinks to extend the lifetime in connected wireless sensor networks. Electron. Notes Discret. Math. 41, 77–84 (2013)

    Google Scholar 

  34. Xu, Z.; Yin, Y.; Wang, J.: An energy efficient multi-sink clustering algorithm for wireless sensor networks. Int. J. Control Autom. 5(4), 34–39 (2012)

    Google Scholar 

  35. Zadeh, L.: A.: fuzzy Sets. Inf. Control 8, 338–353 (1965)

    MATH  Google Scholar 

  36. Mishra, A.K.; Kumar, R.; Singh, J.: Review on fuzzy logic based clustering algorithms for wireless sensor networks. In: International Conference on Futuristic Trend in Computational Analysis and Knowledge Management, pp. 489–494 (2015)

  37. Pal, N.R.; Keller, J.M.; Pal, K.; Bezdek, J.C.: A possibilistic fuzzy-c-means clustering algorithms. IEEE Trans. Fuzzy Syst. 13, 517–530 (2005)

    Google Scholar 

  38. Shengchao, S.; Shuguang, Z.: An optimal cluster mechanism based on fuzzy-c-means for wireless sensor networks. Sustain. Comput. Inf. Syst. 18, 127–134 (2017)

    Google Scholar 

  39. Bhatti, D.M.; Saeed, N.; Nam, H.: Fuzzy-c-means clustering and energy efficient cluster head selection for cooperative sensor network. Sensors 16(9), 1–17 (2016)

    Google Scholar 

  40. Anagha, R.; Vinoth, B.K.: Scalable and sustainable wireless sensor networks for agricultural application of Internet of things using fuzzy-c-means algorithm. Sustain. Comput. Inf. Syst. 22, 62–74 (2019)

    Google Scholar 

  41. Yahya, K.T.; Ubaidullah, B.; Qahtan, M.S.: Two-step fuzzy logic system to achieve energy efficiency and prolonging the lifetime of WSNs. Wirel. Netw. 23, 1889–1899 (2017)

    Google Scholar 

  42. Dan, T.; Laura, G.; Nicolae, T.: Radio transceiver consumption modelling for multi hop wireless sensor networks. UPB Sci. Bull. 75(1), 17–26 (2013)

    Google Scholar 

  43. Hongyang, C.; Feifei, G.; Marcelo, M.; Pei, H.; Junli, L.: Accurate and efficient node localization for mobile sensor networks. Mob. Netw. Appl. 18, 141–147 (2013)

    Google Scholar 

  44. Hongyang, C.; Qingjiang, S.; Rui, T.; Vincent, P.H.; Kaoru, S.: Mobile element assisted cooperative localization for wireless sensor networks with obstacles. IEEE Trans. Wirel. Commun. 9(3), 956–963 (2010)

    Google Scholar 

  45. Hongyang, C.; Gang, W.; Zizhuo, W.; So, H.C.; Vincent, P.H.: Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks. IEEE Trans. Wirel. Commun. 11(1), 108–116 (2012)

    Google Scholar 

  46. Gang, W.; Chen, H.; Youming, L.; Ming, J.: On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wirel. Commun. Lett. 1(5), 536–539 (2012)

    Google Scholar 

  47. Wang, Z.: Comparison of four kinds of fuzzy-c-means methods. In the Third International Symposium on Information Processing, Qingdao, pp. 563–566 (2010)

  48. Xu, J.; Lin, W.; Lang, F.; Zhang, Y.; Wang, C.: Distance measurement model based on RSSI in wireless sensor network. Wirel. Sens. Netw. 2, 606 (2010)

    Google Scholar 

  49. Mao, G.; Fidan, B.; Anderson, B.D.: Wireless sensor network localization techniques. Comput. Netw. 51(10), 2529–2553 (2007)

    MATH  Google Scholar 

  50. Suleman, A.: Measuring the congruence of fuzzy partitions in fuzzy c-means clustering. Appl. Soft Comput. 52, 1285–1295 (2017). https://doi.org/10.1016/j.asoc.2016.06.037

    Article  Google Scholar 

  51. Ayati, M.; Ghayyoumi, M.H.; Mohammadiyan, A.K.: A fuzzy three-level clustering method for lifetime improvement of wireless sensor networks. Ann. Telecommun. (2018). https://doi.org/10.1007/s12243-018-0631-x

    Article  Google Scholar 

  52. Kluge, W.; Poegel, F.; Roller, H.; Lange, M.; Ferchland, T.; Dathe, L.; Eggert, D.: A fully integrated 2.4 GHz IEEE 802.15.4 compliant transceiver for ZigBee applications. IEEE J. Solid State Circuits. 41(12), 2767–2775 (2006)

    Google Scholar 

  53. Hongyang, C.; Bin, L.; Pei, H.; Junli, L.; Yu, G.: Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks. Mob. Netw. Appl. 17, 90–99 (2012)

    Google Scholar 

  54. Zhao, C.; Mark, P.; Wendi, B.H.: General network lifetime and cost models for evaluating sensor network deployment strategies. IEEE Trans. Mob. Comput. 7(4), 484–497 (2008)

    Google Scholar 

  55. Huimin, S.; Zhonghai, L.; Axel, J.; Dian, Z.; Li-Rong, Z.: System level evaluation of sensor networks deployment strategies: Coverage lifetime and cost. In: International Wireless Communications and Mobile Computing Conference, (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoth Babu Kumaravelu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, A., Kumaravelu, V.B. Fuzzy-based Clustering Scheme with Sink Selection Algorithm for Monitoring Applications of Wireless Sensor Networks. Arab J Sci Eng 45, 6601–6623 (2020). https://doi.org/10.1007/s13369-020-04564-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04564-w

Keywords

Navigation