Skip to main content
Log in

An energy efficient grid-based clustering algorithm using type-3 fuzzy system in wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The efficient management of energy in wireless sensor networks (WSNs) is a primary concern among researchers. Clustering algorithms serve as a crucial technique to address this issue. However, the initial uncertainties in both measuring the WSN’s values and in node localization due to GPS lead to secondary uncertainties like residual energy of nodes, cluster centrality, and distance from the cluster to the base station in the higher layers of WSNs. In this study, we have incorporated five improvements to our previous algorithm “FSCVG: A Fuzzy Semi‑Distributed Clustering Using Virtual Grids in WSN”. Firstly, we have discussed and classified uncertainties into two categories: primary uncertainties and secondary uncertainties. Secondly, we have applied a Type-3 fuzzy system to handle secondary uncertainties. Thirdly, we have used an adaptive imaginary grid to generate uneven clusters and balance the load according to the base station location. Fourthly, both decentralized and centralized clustering have applied based on new adaptive imaginary grid updates. Finally, we have determined the threshold level of each cluster proportionally, based on the energy of nodes within the same cluster. The findings of these improvements indicate an increased lifetime of the network concerning comparable methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Abdulwahid, H. M., & Mishra, A. (2022). Deployment optimization algorithms in wireless sensor networks for smart cities: A systematic mapping study. Sensors, 22(14), 5094. https://doi.org/10.3390/s22145094

    Article  Google Scholar 

  2. Li, Z., Zhang, L., Cai, Y., & Ochiai, H. (2021). Sensor selection for maneuvering target tracking in wireless sensor networks with uncertainty. IEEE Sensors Journal, 22(15), 15071–15081. https://doi.org/10.1109/JSEN.2021.3136546

    Article  Google Scholar 

  3. Dertimanis, V., & Chatzi, E. (2020). Sensor networks in structural health monitoring: From theory to practice. Journal of Sensor and Actuator Networks, 9(4), 47. https://doi.org/10.3390/jsan9040047

    Article  Google Scholar 

  4. Khalifeh, A., Tanash, R., AlQudah, M., & Al-Agtash, S. (2023). Enhancing energy efficiency of IEEE 802.15.4- based industrial wireless sensor networks. Journal of Industrial Information Integration, 33, 100460. https://doi.org/10.1016/J.JII.2023.100460

    Article  Google Scholar 

  5. Adu-Manu, K. S., Engmann, F., Sarfo-Kantanka, G., Baiden, G. E., & Dulemordzi, B. A. (2022). WSN protocols and security challenges for environmental monitoring applications: A survey. J. Sensors, 2022, 1–21. https://doi.org/10.1155/2022/1628537

    Article  Google Scholar 

  6. Vandôme, P., et al. (2023). Making technological innovations accessible to agricultural water management: Design of a low-cost wireless sensor network for drip irrigation monitoring in Tunisia. Smart Agricultural Technology, 4, 100227. https://doi.org/10.1016/j.atech.2023.100227

    Article  Google Scholar 

  7. Rawat, P., & Chauhan, S. (2021). Clustering protocols in wireless sensor network: A survey, classification, issues, and future directions. Computer Science Review, 40, 100396. https://doi.org/10.1016/j.cosrev.2021.100396

    Article  MathSciNet  Google Scholar 

  8. Majid, M., Habib, S., Javed, A. R., Rizwan, M., Srivastava, G., Gadekallu, T. R., & Lin, J. C. W. (2022). Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors, 22(6), 2087. https://doi.org/10.3390/s22062087

    Article  Google Scholar 

  9. Sen, S., Sahoo, L., Tiwary, K., Simic, V., & Senapati, T. (2023). Wireless sensor network lifetime extension via K-medoids and MCDM techniques in uncertain environment. Applied Sciences, 13(5), 3196. https://doi.org/10.3390/app13053196

    Article  Google Scholar 

  10. Bhanu, D., & Santhosh, R. (2023). Fuzzy enhanced location aware secure multicast routing protocol for balancing energy and security in wireless sensor network. Wireless Networks. https://doi.org/10.1007/s11276-023-03461-y

    Article  Google Scholar 

  11. Ambareesh, S., Kantharaju, H. C., & Sakthivel, M. (2023). A novel Fuzzy TOPSIS based hybrid jarratt butterfly optimization for optimal routing and cluster head selection in WSN. Peer-to-Peer Networking and Applications, 16(5), 2512–2524. https://doi.org/10.1007/s12083-023-01517-6

    Article  Google Scholar 

  12. Prasad, V. K. H., & Periyasamy, S. (2023). Energy optimization-based clustering protocols in wireless sensor networks and internet of things-survey. Int. J. Distrib. Sens. Networks, 2023, 1–18. https://doi.org/10.1155/2023/1362417

    Article  Google Scholar 

  13. Jubair, A. M., et al. (2021). Optimization of clustering in wireless sensor networks: Techniques and protocols. Applied Sciences, 11(23), 11448. https://doi.org/10.3390/app112311448

    Article  Google Scholar 

  14. Raj, B., Ahmedy, I., Idris, M. Y. I., & Noor, RMd. (2022). A survey on cluster head selection and cluster formation methods in wireless sensor networks. Wireless Communications and Mobile Computing, 2022, 1–53. https://doi.org/10.1155/2022/5322649

    Article  Google Scholar 

  15. Cofta, P., Karatzas, K., & Orłowski, C. (2021). A conceptual model of measurement uncertainty in iot sensor networks. Sensors, 21(5), 1827. https://doi.org/10.3390/s21051827

    Article  Google Scholar 

  16. Mal-Sarkar, S. (2009). Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks (Doctoral dissertation, Cleveland State University).

  17. Magruk, A. (2022). The desirable systemic uncertainty in complex IoT sensor networks—General anticipatory foresight perspective. Sensors, 22(5), 1698. https://doi.org/10.3390/s22051698

    Article  Google Scholar 

  18. Boualem, A., Ayaida, M., De Runz, C., & Dahmani, Y. (2021). An evidential approach for area coverage in mobile wireless sensor networks. International Journal of Fuzzy System Applications (IJFSA), 10(3), 30–54. https://doi.org/10.4018/IJFSA.2021070103

    Article  Google Scholar 

  19. Pan, D., & Zhao, L. (2011). Uncertain data cluster based on DBSCAN. In 2011 International Conference on Multimedia Technology (pp. 3781-3784). IEEE.https://doi.org/10.1109/ICMT.2011.6002707.

  20. Banerjee, S., Erçetin, ŞŞ, & Tekin, A. (Eds.). (2014). Chaos Theory in Politics. Springer, Netherlands.

    Google Scholar 

  21. Edla, D. R., Lipare, A., & Parne, S. R. (2023). Load balanced cluster formation to avoid energy hole problem in WSN using fuzzy rule-based system. Wireless Networks, 29(3), 1299–1310. https://doi.org/10.1007/s11276-022-03200-9

    Article  Google Scholar 

  22. Mazinani, A., Mazinani, S. M., & Mirzaie, M. (2019). FMCR-CT: An energy-efficient fuzzy multi cluster-based routing with a constant threshold in wireless sensor network. Alexandria Engineering Journal, 58(1), 127–141. https://doi.org/10.1016/j.aej.2018.12.004

    Article  Google Scholar 

  23. Bagci, H., & Yazici, A. (2010, July). An energy aware fuzzy unequal clustering algorithm for wireless sensor networks. In International conference on fuzzy systems (pp. 1-8). IEEE. https://doi.org/10.1109/FUZZY.2010.5584580.

  24. Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing, 30, 151–165. https://doi.org/10.1016/j.asoc.2014.11.063

    Article  Google Scholar 

  25. Baranidharan, B., & Santhi, B. J. A. S. C. (2016). DUCF: Distributed load balancing Unequal Clustering in wireless sensor networks using Fuzzy approach. Applied Soft Computing, 40, 495–506. https://doi.org/10.1016/j.asoc.2015.11.044

    Article  Google Scholar 

  26. Mazumdar, N., & Om, H. (2017). Distributed fuzzy logic based energy-aware and coverage preserving unequal clustering algorithm for wireless sensor networks. International Journal of Communication Systems, 30(13), e3283. https://doi.org/10.1002/dac.3283

    Article  Google Scholar 

  27. Balakrishnan, B., & Balachandran, S. (2017). FLECH: Fuzzy logic based energy efficient clustering hierarchy for nonuniform wireless sensor networks. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2017/1214720

    Article  Google Scholar 

  28. Akila, I. S., & Venkatesan, R. (2016). A cognitive multi-hop clustering approach for wireless sensor networks. Wireless Personal Communications, 90, 729–747. https://doi.org/10.1007/s11277-016-3200-5

    Article  Google Scholar 

  29. Mazinani, A., Mazinani, S. M., & Hasanabadi, S. (2021). FSCVG: A fuzzy semi-distributed clustering using virtual grids in WSN. Wireless Personal Communications, 118(2), 1017–1038. https://doi.org/10.1007/s11277-020-08056-w

    Article  Google Scholar 

  30. Agrawal, D., & Pandey, S. (2018). FUCA: Fuzzy-based unequal clustering algorithm to prolong the lifetime of wireless sensor networks. International Journal of Communication Systems, 31(2), e3448. https://doi.org/10.1002/dac.3448

    Article  Google Scholar 

  31. Castillo, O., Castro, J. R., & Melin, P. (2022). Interval type-3 fuzzy systems: theory and design. Springer International Publishing.

  32. Gomide, F. (2003). Uncertain rule-based fuzzy logic systems: introduction and new directions. Fuzzy Sets and Systems, 1(133), 133–135. https://doi.org/10.1016/s0165-0114(02)00359-7

    Article  Google Scholar 

  33. Mendel, J. M. (2017). Uncertain Rule-Based Fuzzy Systems. Springer International Publishing.

    Book  Google Scholar 

  34. Rickard, J. T., Aisbett, J., & Gibbon, G. (2008). Fuzzy Subsethood for Fuzzy Sets of Type-2 and Generalized Type-${n} $. IEEE Transactions on Fuzzy Systems, 17(1), 50–60. https://doi.org/10.1109/TFUZZ.2008.2006369

    Article  Google Scholar 

  35. Liu, Z., Mohammadzadeh, A., Turabieh, H., Mafarja, M., Band, S. S., & Mosavi, A. (2021). A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access, 9, 10498–10508. https://doi.org/10.1109/ACCESS.2021.3049301

    Article  Google Scholar 

  36. “Interval Type-3 Fuzzy Systems: Theory and Design (Studies in Fuzziness and Soft Computing, 418): Castillo, Oscar, Castro, Juan R., Melin, Patricia: 9783030965143: Amazon.com: Books.” https://www.amazon.com/Interval-Type-3-Fuzzy-Systems-Fuzziness/dp/3030965147 (accessed Apr. 25, 2023).

  37. Santhosh Kumar, S. V. N., Palanichamy, Y., Selvi, M., Ganapathy, S., Kannan, A., & Perumal, S. P. (2021). Energy efficient secured K means based unequal fuzzy clustering algorithm for efficient reprogramming in wireless sensor networks. Wireless Networks, 27, 3873–3894. https://doi.org/10.1007/s11276-021-02660-9

    Article  Google Scholar 

  38. Abasikeleş-Turgut, İ. (2020). DiCDU: Distributed clustering with decreased uncovered nodes for WSNs. IET Communications, 14(6), 974–981. https://doi.org/10.1049/iet-com.2019.0629

    Article  Google Scholar 

  39. Abasıkeleş-Turgut, İ, & Altan, G. (2021). A fully distributed energy-aware multi-level clustering and routing for WSN-based IoT. Transactions on Emerging Telecommunications Technologies, 32(12), e4355. https://doi.org/10.1002/ett.4355

    Article  Google Scholar 

  40. Abasıkeleş-Turgut, İ. (2021). Multihop routing with static and distributed clustering in WSNs. Wireless Networks, 27(6), 3797–3809. https://doi.org/10.1007/s11276-021-02683-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyed Majid Mazinani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, M., Mazinani, S.M. & Khazaei, A.A. An energy efficient grid-based clustering algorithm using type-3 fuzzy system in wireless sensor networks. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03737-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03737-x

Keywords

Navigation